

B. Other reason:

ACCESS MANAGEMENT EXCEPTION REQUEST: AM-E

ACCESS MANAGEMENT REGULATIONS 24 VAC 30-73 SECTION 120

Submitted by:			Date:
Email Address:			Phone:
Address:		.	
Project Name:	Rte #	Loca	ality:
Description of Project:		·	
VDOT District:	Area Land Use Engine	eer:	
O.T.C.			
OTES: .). Submit this form and any attachments to one of the District's	s Area Land Use Engineers	.	
). See Section 120 of the Regulations for details on the requirement	ents, exceptions, and exce		view process.
). Attach additional information as necessary to justify the exce			
 If a traffic engineering study is required, the decision on the r Use the LD-440 Design Exception or the LD-448 Design Waiv 			
distance. See IIM-LD-227 on VDOT web site for additional			,,, д, д,
Solost the Sys	ontion(s) Boing Bosse	nata d	
_	eption(s) Being Reque		
Exception to the shared commercial entra	nce requirement. (Ad	ccess M. Regula	tions Section 120 C.2)
Reason for exception: A. An agreement to share the entrance	a could not be reached	l with adiainin	og proporty owner
Attached: Written evidence the			
B. Physical constraints: topography,	adjacent hazardous la	and use, strea	ım, wetland, other.
Specify constraint:			
Attached: Documentation of c	constraint such as aerial	photo or topo	ographic map.
Exception to the vehicular connection to adj	joining undeveloped p	property requ	irement. (Section 120 C.4)
Reason for exception:			
A. Physical constraints: topography,	adjacent hazardous la	and use, strea	am, wetland, other.
Specify constraint:			

Attached: Documentation of constraint such as aerial photo or topographic map.

	Exception to the commercial entrance shall not be located within the functional area of an intersection requirement. (See Regulation Section 120 C. 1; Appendix F, Rd Design Manual)
	Attached: A traffic engineering study documenting that the operation of the intersection and public safety will not be adversely impacted.
	EXCEPTION TO THE SPACING STANDARDS FOR:
•	Commercial entrances; intersections/median crossovers (Table 2-2);
•	Commercial entrances/intersections near interchange ramps (Tables 2-3, 2-4); or
•	Corner clearance (Figure 4-4). Appendix F, Road Design Manual
	Information on the Exception Request
	ON A STATE HIGHWAY
	Functional classification: Principal Arterial: Minor Arterial: Collector: Local: Collector: Collect
	Posted speed limit:mph
	NEAR AN INTERCHANGE RAMP (Submittal of a traffic engineering study required)
	CORNER CLEARANCE (Submittal of a traffic engineering study required)
	Type of intersection/entrance: Signalized Unsignalized Full Access Partial Access
	Required spacing distanceft
	Proposed spacing distanceft
	Requested exception: Reduction in required spacingft
<u>L</u>	
	REASON FOR EXCEPTION:
	A. To be located on an older, established business corridor along a highway where existing spacing did not meet the standards prior to 7/1/08 or 10/14/09. (Regulation Section 120 C.3.c)
	Attached: Dated aerial photo of corridor identifying proposed entrance/intersection location.
	B. Not enough property frontage to meet spacing standard, but the applicant does not want a partial access right-in/right-out entrance. (Section 120 C.3.f)
	Attached: A traffic engineering study documenting that left turn movements at the entrance will not have a negative impact on highway operation or safety.
	C. To be located within a new urbanism mixed use type development. (Section 120 C.3.d)
	Attached: The design of the development and compliance with intersection sight distance.
	D. The proposed entrance meets the signal warrants but does not meet the signalized intersection spacing standard. The applicant requests an exception to the spacing standard.
	Attached: A traffic engineering study that (i) evaluates the location's suitability for a roundabout and (ii) provides documentation that the proposed signal will not impact safety and traffic flow. (Section 120 C.5)

E. The development's 2 nd (or additional) entrance does necessary for the streets to be accepted into the second	
Attached: Information on the development that identif	fies the location of entrances.
F. To be located within the limits of a VDOT and locality app	roved access management corridor plan.
Attached: Aerial photo of corridor identifying proposed er	
Attached. Actial prioto of corridor identifying proposed er	ittance/intersection location, (sect 120 c.s.s)
FOR VDOT USE ONLY	
Recommendation on Exception Request: Approve Deny	Date:
Area Land Use Engineer or: Name	•
Remarks:	
Exception Request Action: Approved Denied Denied	Date:
District Administrator or Designee:	
Name (and position if Designee)	
Remarks:	
	,

District Staff: Please email copy to Bradley.Shelton@VDOT.Virginia.gov

RAMEY KEMP & ASSOCIATES, INC.

4343 Cox Road Glen Allen, VA 23060

Phone: 804-217-8560 Fax: 804-217-8563

www.rameykemp.com

April 6, 2018

Mr. Michael Zuraf Stafford County 1300 Courthouse Road Stafford, Virginia 22554 Phone: (540) 658-8668

Reference: Enon Road C-Store – Traffic Impact Analysis (TIA)

Stafford County, Virginia

Dear Mr. Zuraf,

Ramey Kemp & Associates, Inc. (RKA) has performed a TIA to support the proposed convenience store in the southwest quadrant of the intersection of U.S. 1 at Enon Road / Cranes Corner Road. The conceptual site plan includes a convenience store with 12 fueling positions. The access plan includes one full-movement driveway on Enon Road approximately 600 feet west of U.S. 1, and one right-in / right-out driveway on U.S. 1 approximately 425 feet south of Enon Road / Cranes Corner Road. If approved, the store is expected to be built-out by 2020. Figure 1 shows the site location and study intersections.

Based on the scoping meeting with the County and the Virginia Department of Transportation (VDOT) on March 12, the purpose of this letter report is to provide the following:

- Trip generation calculations
- Evaluation of turn lane warrants for both driveways
- Capacity analysis of study intersections
- Access Management Exception (AME) request

Existing Roadway Conditions

U.S. 1 is a four-lane divided Principal Arterial with an average daily traffic (ADT) volume of approximately 24,000 vehicles per day south of Enon Road. North of ENON Road, U.S. 1 is a six-lane divided roadway with an ADT volume of approximately 18,000 vehicles per day, and a posted speed limit of 45 mph in the vicinity of the site.

Centreport Parkway is a two-lane major collector with an ADT volume of approximately 6,500 vehicles per day, and a posted speed limit of 45 mph.

Enon Road is a two-lane major collector with an ADT volume of approximately 5,900 vehicles per day, and a posted speed limit of 40 mph.

Cranes Corner Road is a two-lane local collector with an ADT volume of approximately 330 vehicles per day, and a posted speed limit of 30 mph.

Existing Traffic Volumes

The AM peak hour (6:30 to 9:00 AM) and PM peak hour (2:00 to 6:00 PM) turning movement counts were conducted by Technical Traffic Services at the following intersections during the weeks of January 9 and January 30, 2017:

- U.S. 1 at Enon Road / Cranes Corner Road
- U.S. 1 at Centreport Parkway

The 2017 count volumes were grown by 2% for one year to estimate the existing 2018 volumes which are shown in Figure 2. Note that the volumes have been increased as necessary to balance between intersections. For the analysis, the peak hour factor (PHF) was calculated by approach, which is a requirement of VDOT's *Traffic Operations and Safety Analysis Manual* (TOSAM). The traffic count data is included in the appendix.

Background Traffic Growth

Based on discussion with VDOT, the existing 2018 volumes were grown by an annual rate of 2% for two years to estimate the 2020 no-build volumes.

Approved Development Traffic

We understand there are two approved developments near the site that are included in this TIA. Potomac Creek Crossing is a 38,421 square foot (s.f.) office building located on the west side of U.S. 1 approximately 3,000 feet north of Enon Road. The trip generation potential of Potomac Creek Commercial during a typical weekday, AM peak hour and PM peak hour was estimated using the methodologies published by the Institute of Transportation Engineers (ITE) *Trip Generation Manual* -10^{th} *Edition*.

Table 1
ITE Trip Generation – 10th Edition – Weekday – Potomac Creek Commercial

Land Use (ITE Land Use Code)	Size	Weel Daily T	Fraffic	AM Pea (vp		PM Pea (vp	
		Enter	Exit	Enter	Exit	Enter	Exit
General Office (710)	38,500 s.f.	210	210	54	9	7	39

Figures 4 and 5 show the trip distribution and assignment for Potomac Creek Commercial.

Cranes Corner Residential consists of 21 single family homes located at the end of Cranes Corner Road. The ITE trip generation potential of Cranes Corner Residential is shown in Table 2.

Table 2 ITE Trip Generation – 10th Edition – Weekday – Cranes Corner Residential

Land Use (ITE Land Use Code)	Size	Weel Daily ' (v _I		AM Pea (vp		PM Pea (vp	
		Enter	Exit	Enter	Exit	Enter	Exit
Single Family Detached Housing (210)	21 homes	124	124	5	15	14	9

Figures 6 and 7 show the trip distribution and assignment for Cranes Corner Residential. The total approved development trips are shown in Figure 8. The total approved development trips were combined with the background growth to estimate the 2020 no-build traffic volumes, which are shown in Figure 9.

Trip Generation

Based on discussion with VDOT, the trip generation potential of the proposed C-store was estimated by using the multi-variable regression formula published by ITE. Table 3 shows the ITE trip generation potential of the proposed 7,000 s.f. convenience store with 12 fueling positions.

Table 3
<u>ITE Trip Generation – 10th Edition</u> – Weekday

Land Use (ITE Land Use Code)	Size	Daily 7	kday Fraffic od)	AM Pea (vp		PM Pea (vp	
		Enter	Exit	Enter	Exit	Enter	Exit
Super Convenience Market / Gas Station (960)	12 f.p.	1,383	1,383	264*	264*	207*	207*
ITE Pass-by Trips: 63% AM	M / 66% PM	-892	-892	-166	-166	-137	-137
New Primary Tri	ips	491	491	98	98	70	70

^{*} Value was calculated using the multi-variable regression formula published by ITE.

Convenience stores attract pass-by trips, which are made by drivers who are already driving by the site today and will visit the C-store in the future because it is convenient. The ITE pass-by rates are shown in Table 3.

Site Traffic Distribution

The following primary site traffic distribution was applied based on a review of the existing traffic volumes, the adjacent roadway network, and engineering judgement:

- 40% to / from the south on U.S. 1
- 20% to / from the north on U.S. 1
- 20% to / from the west on Centreport Parkway
- 20% to / from the west on Enon Road

Based on the historical ADT's, it was assumed that 80% of the total pass-by trips will originate from U.S. 1, and 20% of the total pass-by trips will originate from Enon Road.

The following directional distributions were applied to U.S. 1:

- AM Peak 75% northbound / 25% southbound
- PM Peak 30% northbound / 70% southbound

The following directional distributions were applied to Enon Road:

- AM Peak 50% westbound / 50% eastbound
- PM Peak 50% westbound / 50% eastbound

Figures 10 and 11 show the primary and pass-by site traffic distributions, respectively. Figure 12 shows the primary site trip assignment, and Figure 13 shows the pass-by site trip assignment. Figure 14 shows the total site trips, and Figure 15 shows the build 2020 peak hour traffic volumes.

VDOT Turn Lane Warrant Analysis

The projected build-out AM and PM peak hour traffic volumes at the proposed driveways were compared to the turn lane warrants in the VDOT *Access Management Design Standards for Entrances and Intersections*:

Enon Road at Full-Movement Driveway:

- A westbound left-turn lane on Enon Road is warranted
- An eastbound right-turn taper on Enon Road is warranted

U.S. 1 at Right-in / Right-out Driveway:

• A southbound right-turn lane on U.S. 1 is warranted

The turn lane warrant diagrams are enclosed for reference, and Figure 16 shows the recommended lanes.

Intersection Spacing Standards

VDOT requires at least 305 feet of separation between traffic signals and partial access driveways on Principal Arterial roadways posted 45 mph. The proposed right-in / right-out driveway on U.S. 1 is approximately 425 feet south of Enon Road, which exceeds VDOT minimum spacing standards.

VDOT requires at least 335 feet of separation between full-movement access driveways and other intersections on Collector roads posted 40 mph. The proposed full-movement driveway on Enon Road is approximately 600 feet west of U.S. 1, which exceeds VDOT minimum spacing standards, but is located within the functional area of the U.S. 1 at Enon Road / Cranes Corner Road intersection. An AME request form is attached.

Traffic Capacity Analysis

Traffic capacity analysis for the study intersections was performed using Synchro 9.1, which is a comprehensive software package that allows the user to model signalized and unsignalized intersections to determine levels-of-service based on the thresholds specified in the 2010 Highway Capacity Manual (HCM). Note that the reported queues for movements with LOS F were determined using SimTraffic. The SimTraffic maximum queues shown are the average of ten simulation runs.

Table 4 summarizes the capacity analysis results for the signalized intersection of U.S. 1 at Centreport Parkway, and all of the Synchro outputs are enclosed for reference.

Table 4
Level-of-Service Summary for U.S. 1 at Centreport Parkway

	LANIE	Al	M PEAK	HOUR	PN	и реак н	OUR
CONDITION	LANE GROUP	Lane LOS	Queue (ft)	Overall LOS (Delay)	Lane LOS	Queue (ft)	Overall LOS (Delay)
	WBL	D	292		Е	735	
	WBR	В	142	_	В	56	~
Existing 2018	NBT	В	209	В	C	157	C
Traffic Conditions	NBR	A	31	(14.4 sec)	A	199	(28.2 sec)
	SBL	A	37	(1111500)	C	131	(20.2 500)
	SBT	A	50		C	415	
	WBL	D	304		D	866	
	WBR	C	196	_	В	64	
No-Build 2020	NBT	В	227	В	C	156	C
Traffic Conditions	NBR	A	44	(15.7 sec)	A	196	(29.3 sec)
	SBL	A	42	(13.7 500)	C	148	(2).5 500)
	SBT	A	54		C	418	
	WBL	Е	324		D	909	
	WBR	C	197	_	В	65	
Build 2020	NBT	В	236	В	C	171	C
Traffic Conditions	NBR	A	57	(17.8 sec)	В	229	(30.7 sec)
	SBL	A	43	(17.0 500)	C	146	(30.7 500)
	SBT	A	58		С	420	

Capacity analysis indicates that this intersection currently operates at LOS B during the AM peak hour and at LOS C during the PM peak hour. Under no-build conditions, capacity analysis indicates that this intersection is expected to continue to operate at LOS B during the AM peak hour and at LOS C during the PM peak hour.

Under build conditions, the intersection is expected to operate at LOS B during the AM peak hour and LOS C during the PM peak hour with all movements operating at LOS D or better. No improvements are warranted or recommended at this intersection.

Table 5 summarizes the capacity analysis results for the signalized intersection of U.S. 1 at Enon Road / Cranes Corner Road. All of the Synchro and SimTraffic outputs are enclosed for reference.

Table 5
Level-of-Service Summary for U.S. 1 at Enon Road / Cranes Corner Road

	LANE	Al	M PEAK	HOUR	PN	И РЕАК Н	OUR
CONDITION	GROUP	Lane LOS	Queue (ft)	Overall LOS (Delay)	Lane LOS	Queue (ft)	Overall LOS (Delay)
	EBL/T	E	497		Е	399	
	EBR	A	60		В	84	
	WBL/T/R	E	39	_	E	16	~
Existing 2018	NBL	E	677	D	F	252	C
Traffic Conditions	NBT/R	В	318	(42.5 sec)	A	106	(27.9 sec)
	SBL	E	10	(12.5 500)	F	19	(27.5 500)
	SBT	E	232		C	901	
	SBR	E	218		A	22	
	EBL/T	F	479		F	331	
	EBR	A	66		В	87	
No-Build 2020	WBL/T/R	E	57		Е	23	
II .	NBL	E	721	D	F	297	C
Traffic Conditions	NBT/R	В	352	(46.9 sec)	Α	114	(30.1 sec)
	SBL	E	15	(40.7 SCC)	F	87	(30.1 sec)
	SBT	E	255		C	943	
	SBR	F	264		Α	34	
	EBL	Е	324		Е	192	
	EBT/R	A	62		C	139	
Build 2020	WBL/T/R	E	57		Е	24	
II .	NBL	E	882	D	F	378	C
Traffic Conditions	NBT/R	В	275	(45.7 sec)	Α	108	(31.5 sec)
(With Improvements)	SBL	E	15	(43.7 800)	F	69	(31.3 SCC)
	SBT	E	317		C	964	
	SBR	C	176		A	0	

Capacity analysis indicates that this intersection currently operates at LOS D during the AM peak hour and LOS C during the PM peak hour. Under no-build conditions, the intersection is expected to continue to operate at LOS D during the AM peak hour and LOS C during the PM peak hour.

Under build conditions, the intersection is expected to operate at LOS D during the AM peak hour and LOS C during the PM peak hour with the following improvement:

- Construct one eastbound left-turn lane on Enon Road with 325 feet of storage
- Modify the existing signal to provide a right-turn overlap for the southbound right-turn movement on U.S. 1
- Restripe the eastbound approach to provide dual left-turn lanes and one shared through-right turn lane
- Restripe the existing northbound left-turn lane to extend the existing storage as far as possible

Table 6 summarizes the capacity analysis results for the proposed unsignalized intersection of U.S. 1 at Right-in / Right-out Driveway, and all of the Synchro outputs are enclosed for reference.

Table 6
Level-of-Service Summary for U.S. 1 at Right-in / Right-out Driveway

	LANE	Al	M PEAK H	IOUR	PM	I PEAK H	OUR
CONDITION	GROUP	Lane LOS	Queue (ft)	Overall LOS (Delay)	Lane LOS	Queue (ft)	Overall LOS (Delay)
D 1110000	EBR ¹	В	13	_	D	50	-
Build 2020	NBT	-	-	N/A^2	-	-	N/A^2
Traffic Conditions	SBT SBR	-	-	- "	-	-	

1. Level of service for minor approach

Capacity analysis indicates that the eastbound right-turn movement out of the site is projected to operate with short delays (less than 25 seconds) during the AM peak hour, and with moderate delays (between 25 and 50 seconds) during the PM peak hour at build-out, and the queue lengths are expected to be two vehicles or less.

Table 7 summarizes the capacity analysis results for the proposed unsignalized intersection of Enon Road at Full-movement Driveway. All of the Synchro and SimTraffic outputs are enclosed for reference.

Table 7
Level-of-Service Summary for Enon Road at Full-movement Driveway

	LANE	AI	M PEAK H	IOUR	PM	1 РЕАК Н	OUR
CONDITION	GROUP	Lane LOS	Queue (ft)	Overall LOS (Delay)	Lane LOS	Queue (ft)	Overall LOS (Delay)
	EBT	-	-		-	-	
	EBR	-	-		-	-	
Build 2020	WBL^2	В	23	N/A^3	A	5	N/A^3
Traffic Conditions	WBT	-	-	IN/A	-	-	1 N /A
	NBL^1	F	89		D	18	
	NBR ¹	C	48		В	13	

1. Level of service for minor approach

2. Level of service for major street left-turn movement

Capacity analysis indicates that the minor street left-turn movement out of the site is projected to operate with long delays (greater than 50 seconds) during the AM peak hour, and with moderate delays (between 25 and 50 seconds) during the PM peak hour at build-out, and the queue lengths are expected to be four vehicles or less. Long delays are common for minor street left-turn movements at intersections with major thoroughfares, and this intersection is not expected to meet signal warrants.

^{2.} HCM methodology does not provide lane group or overall LOS, delay, and queue lengths for major street through movements or right turns at unsignalized intersections.

HCM methodology does not provide lane group or overall LOS, delay, and queue lengths for major street through
movements or right turns at unsignalized intersections.

Mr. Michael Zuraf Page 8 of 8

Recommendations

Based on the trip generation potential of the proposed convenience store, the following off-site roadway improvements are recommended:

U.S. 1 at Enon Road / Cranes Corner Road

- Construct one eastbound left-turn lane on Enon Road with 325 feet of storage
- Modify the existing signal to provide a right-turn overlap for the southbound right-turn movement on U.S. 1
- Restripe the eastbound approach to provide dual left-turn lanes and one shared through-right turn lane
- Restripe the existing northbound left-turn lane to extend the existing storage as far as possible

Enon Road at Full-Movement Driveway

- Construct one westbound left-turn lane on Enon Road with 50 feet of storage
- Construct site driveway with one ingress lane and two egress lanes

U.S. 1 at Right-in / Right-out Driveway

- Restripe the existing pavement to create one southbound right-turn lane on U.S. 1 with 200 feet of storage
- Construct site driveway with one ingress lane and one egress lane

We appreciate your attention to this matter. Please contact me at (804) 217-8560 if you have any questions about this report.

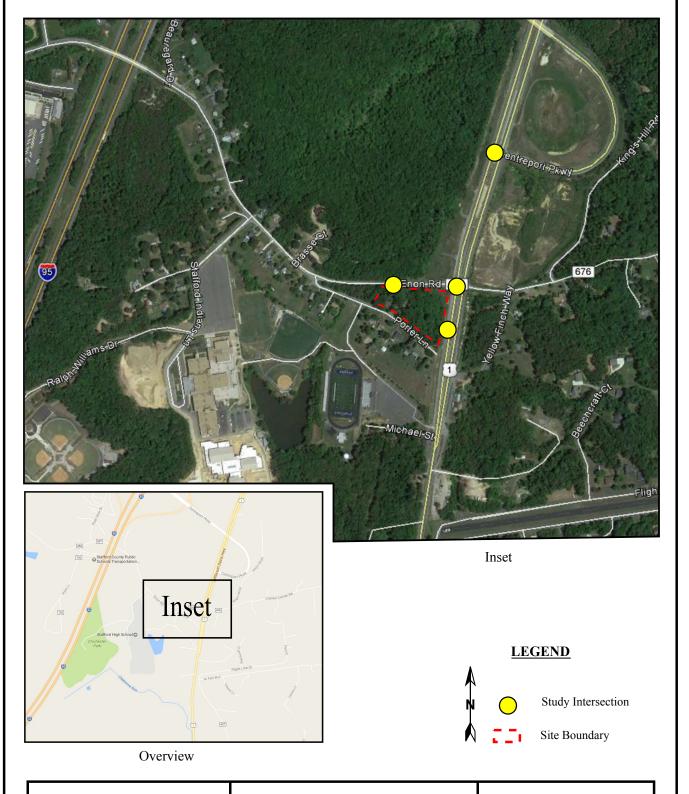
Sincerely yours,

Ramey Kemp & Associates, Inc.

Lic. No. 054363

Michael D. Bailey, P.E., PTOE Project Manager

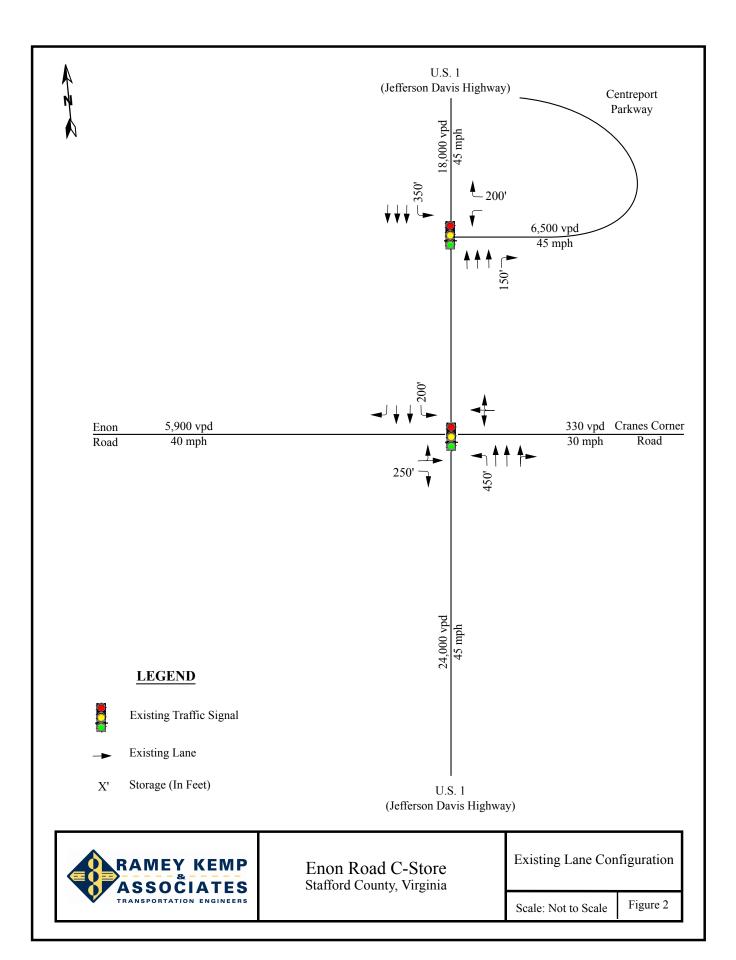
Enclosures: AME request, Figures, Traffic count data, Synchro output, VDOT turn lane warrant diagrams

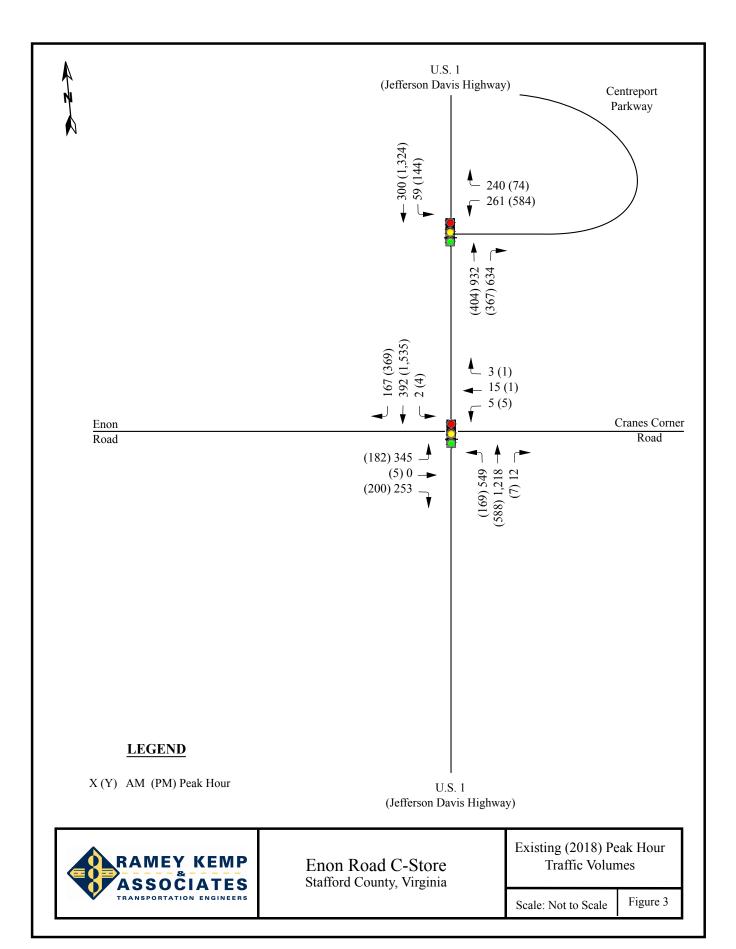

Copy to: Mr. David Beale, P.E., VDOT

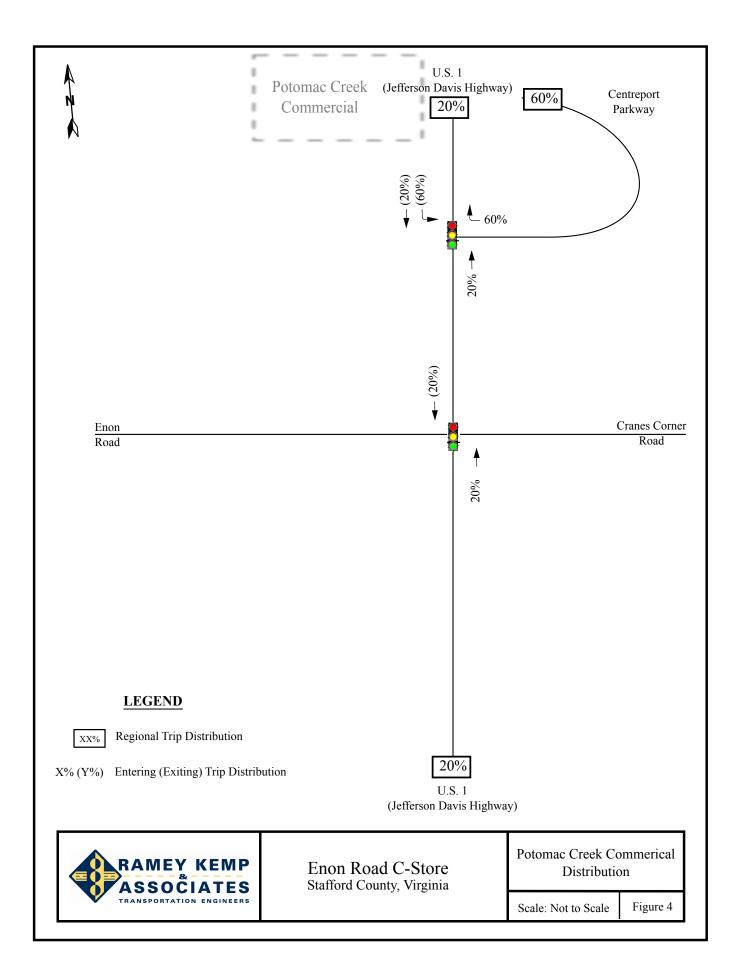
Mr. Peter Hedrich, P.E., PTOE, VDOT

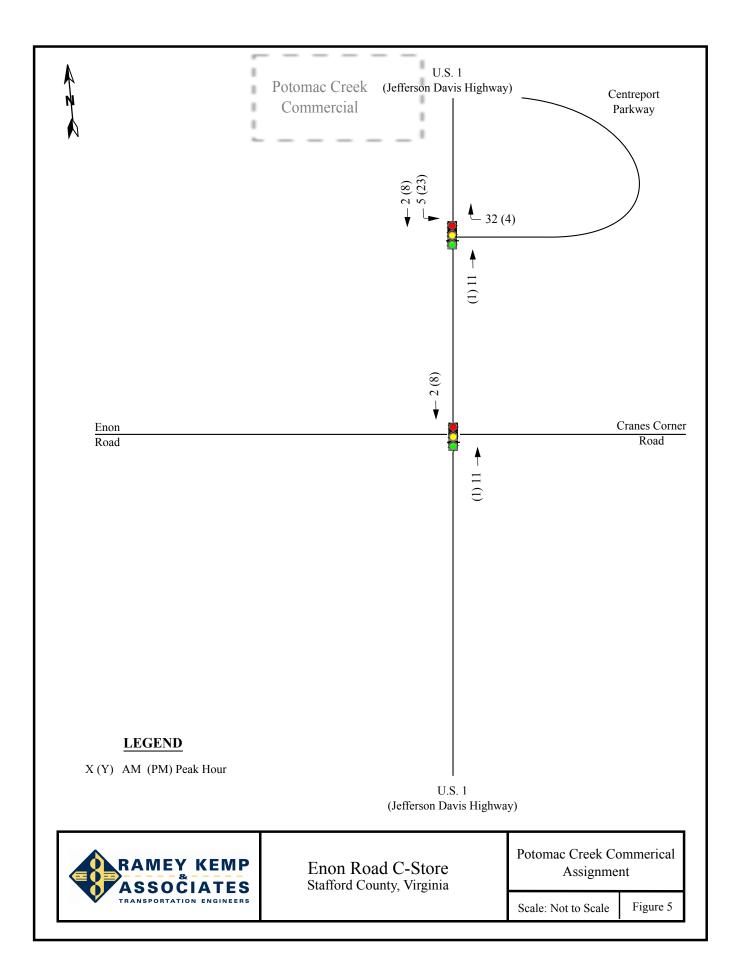
Ms. Margaret Niemann, VDOT Mr. Joey Hess, Stafford County

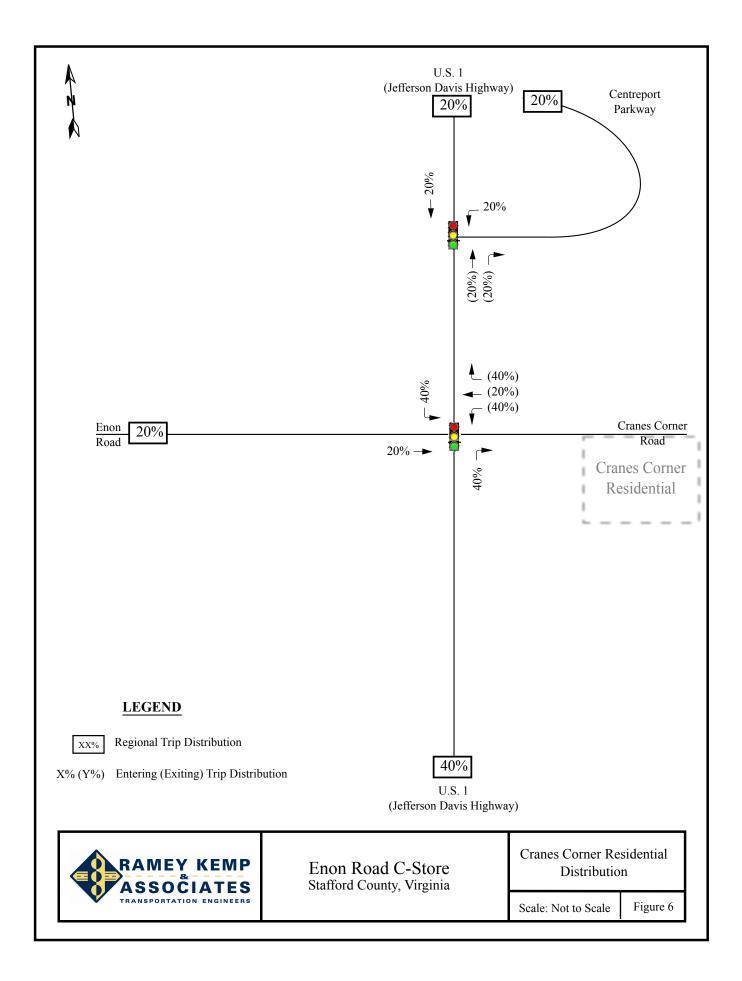
Mr. Thomas Wack, Wack General Contractor Mr. Justin Franklin, P.E., Fairbanks & Franklin Ms. Debrarae Karnes, Leming & Healy, PC

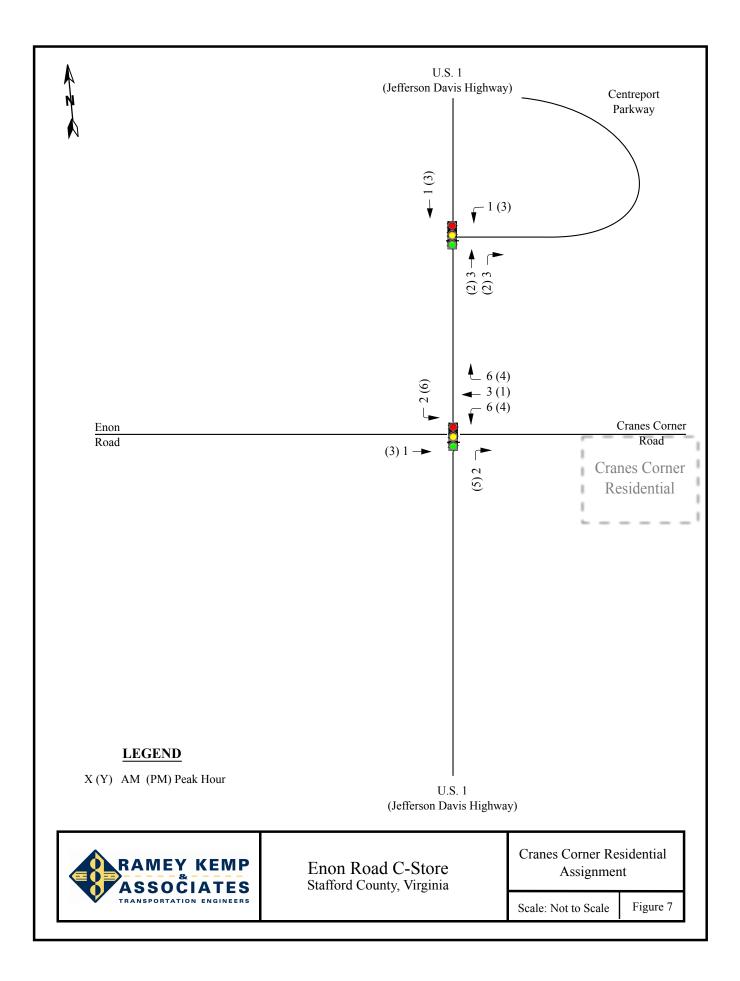


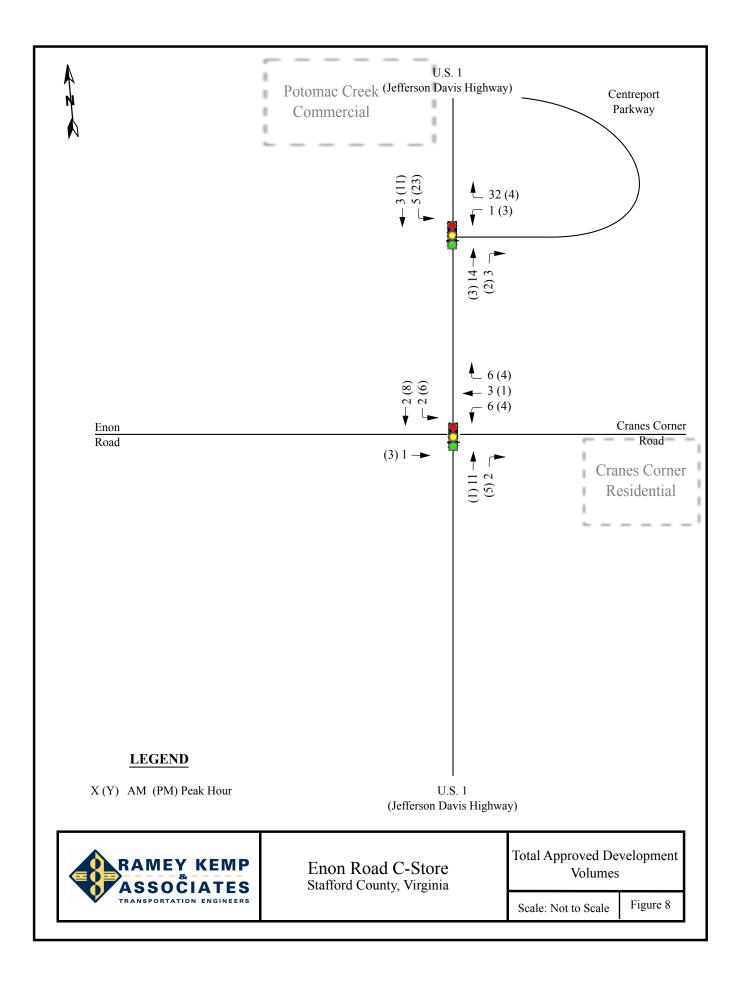

Enon Road C-Store Stafford County, Virginia

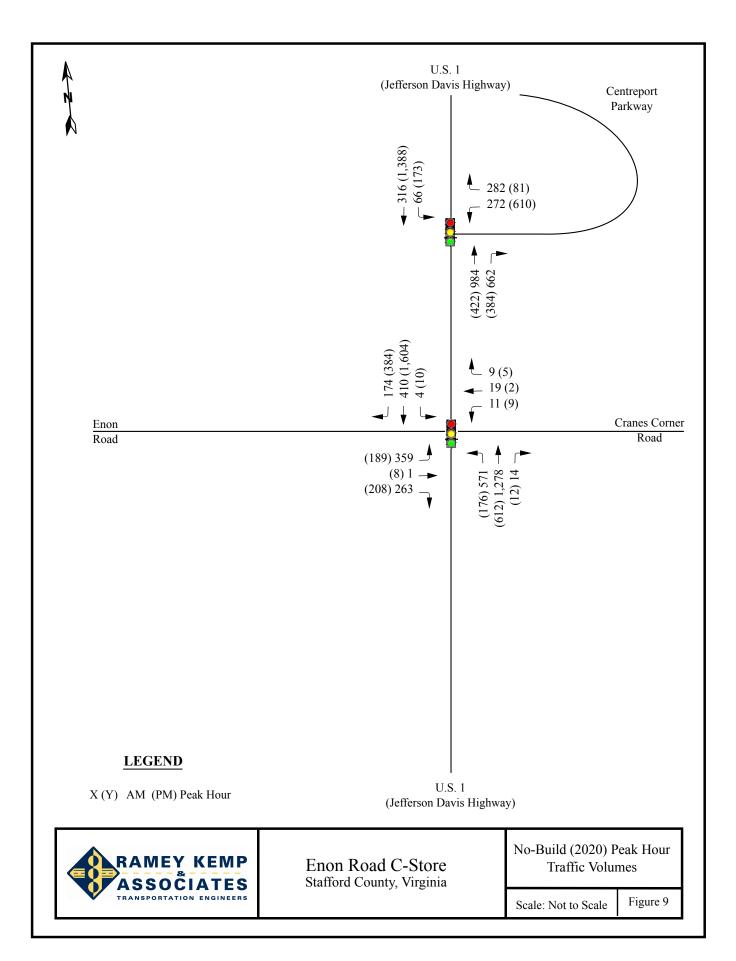

Site Location and Study Intersections

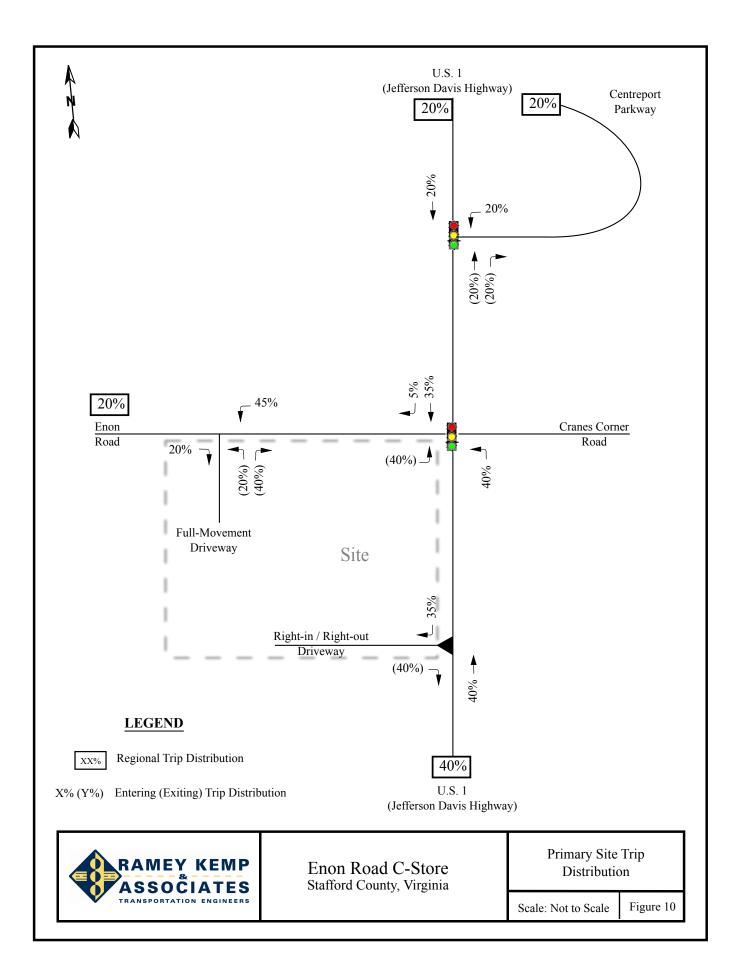

Scale: Not to Scale

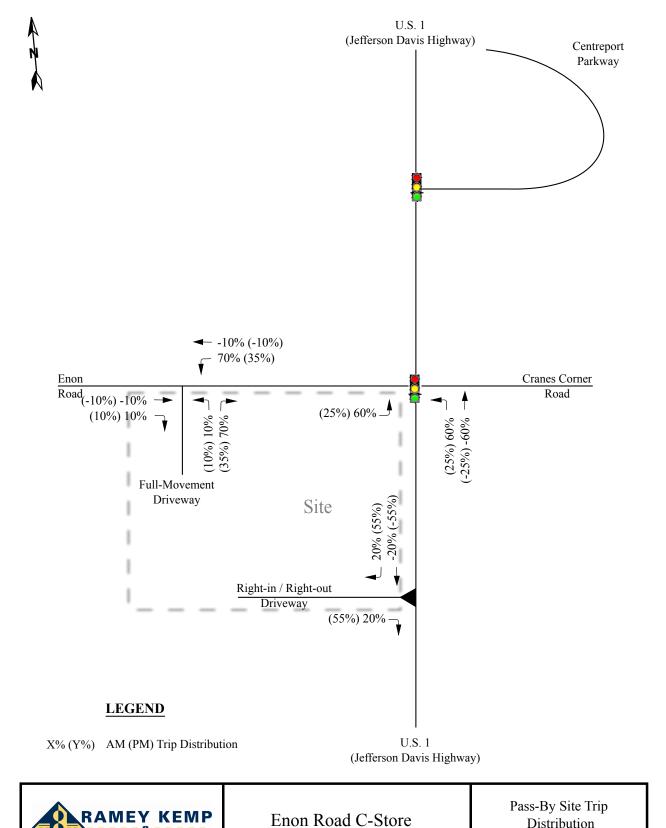

Figure 1

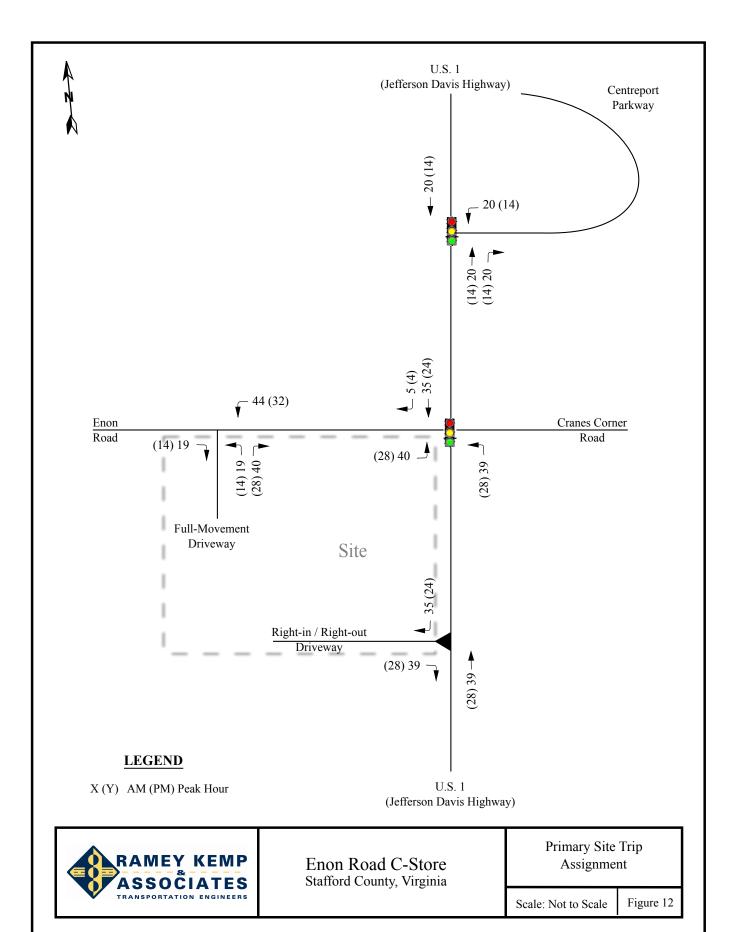


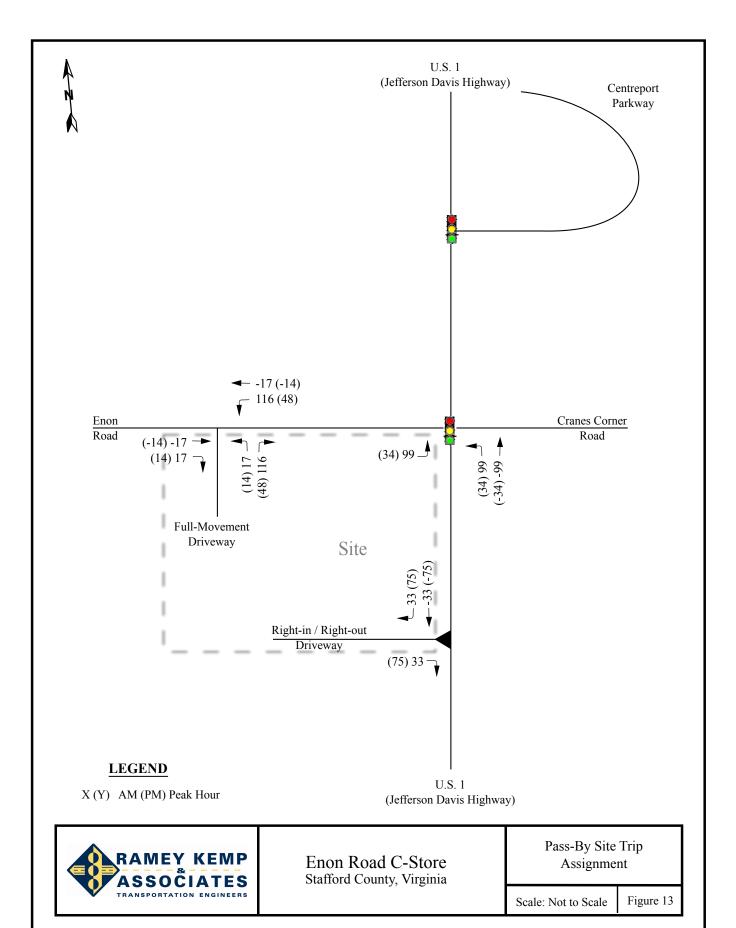


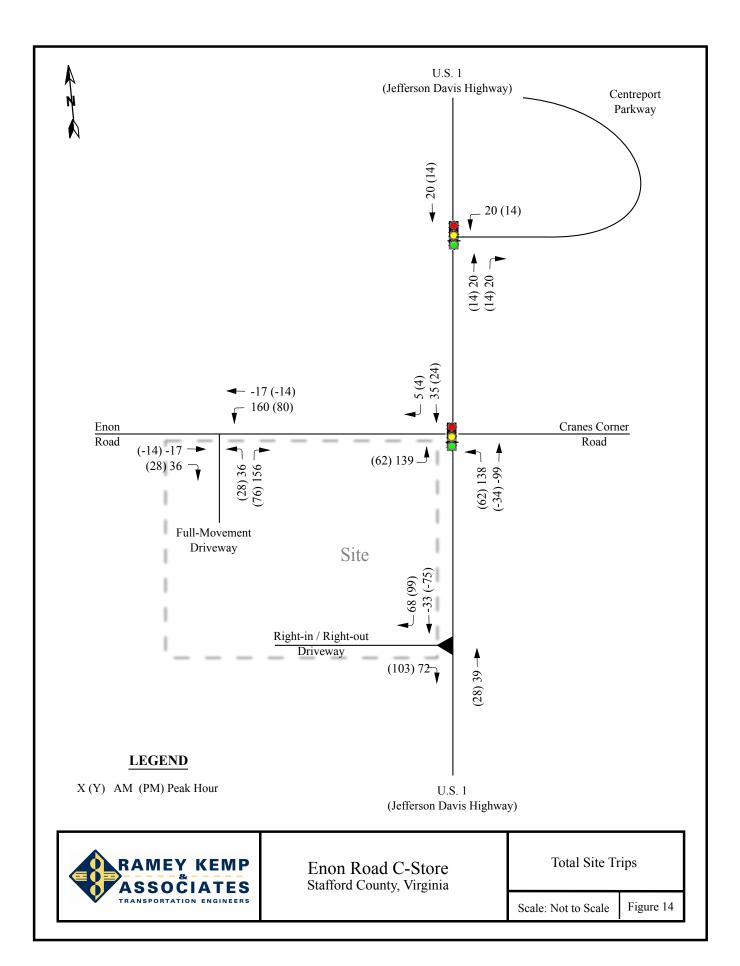









Stafford County, Virginia


Distribution

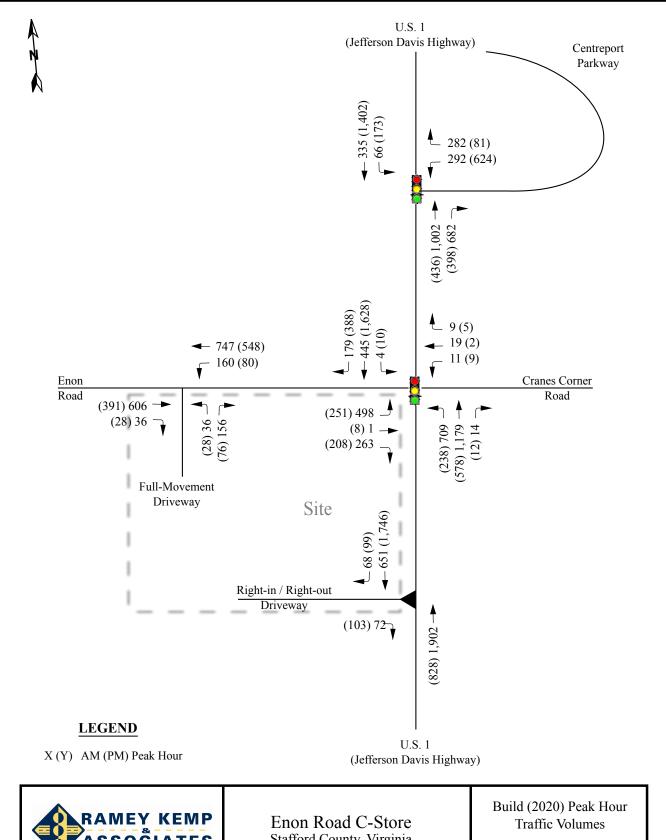
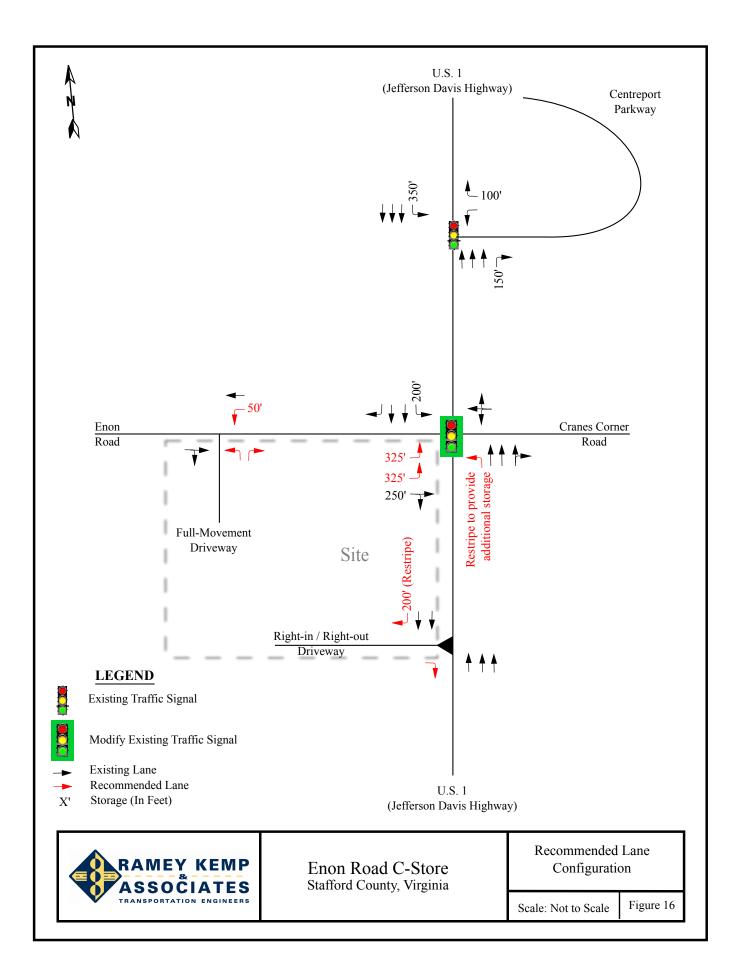

Scale: Not to Scale

Figure 11



Stafford County, Virginia

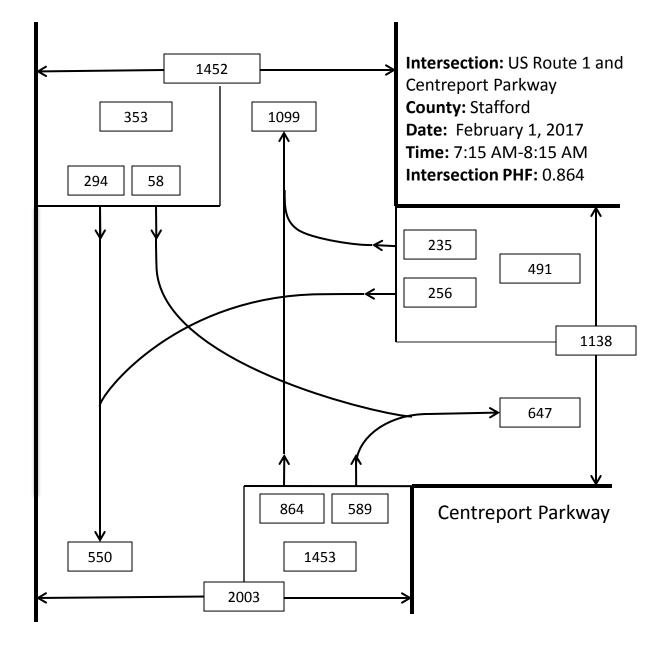

Scale: Not to Scale

Figure 15

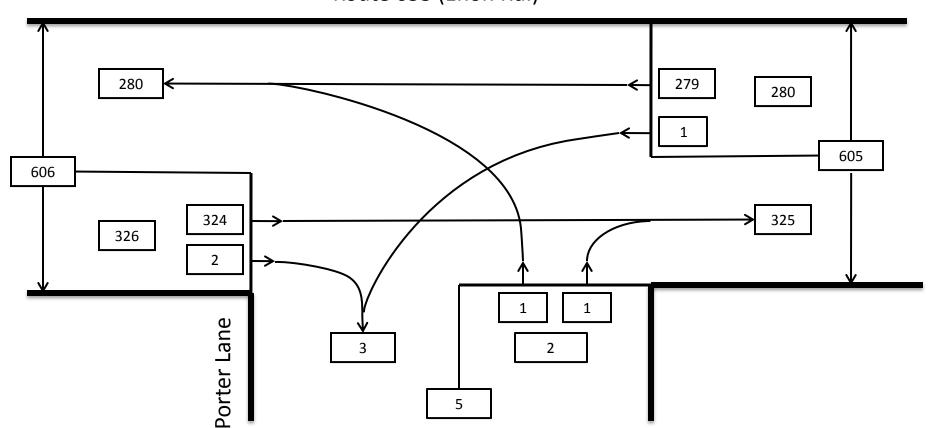
AM Peak Hour

JS ROUTE 1

Ν

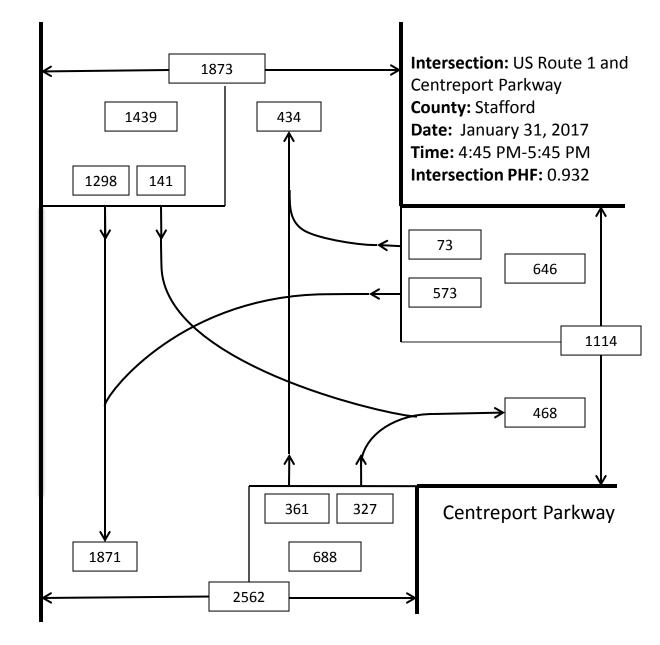
AM Peak Hour

Intersection: Enon Rd. and


Porter Lane

County: Stafford

Date: February 1, 2017 **Time:** 7:15 AM – 8:15 AM


PHF: 0.813

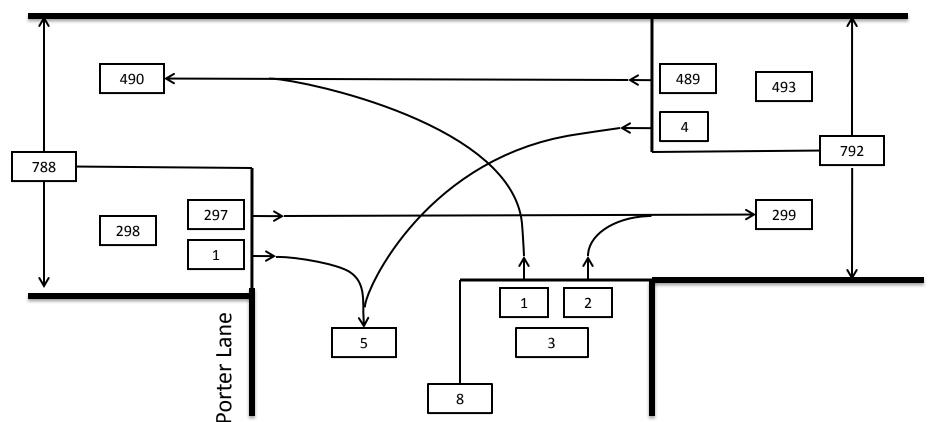
PM Peak Hour

JS ROUTE 1

PM Peak Hour

Intersection: Enon Rd. and

Porter Lane


County: Stafford

Date: January 31, 2017 **Time:** 4:30 PM – 5:30 PM

PHF: 0.928

Route 653 (Enon Rd.)

	•	•	†	~	\	+
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	^	7	ኘ	↑ ↑↑
Traffic Volume (vph)	261	240	932	634	59	300
Future Volume (vph)	261	240	932	634	59	300
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	200	1700	150	350	1700
Storage Lanes	1	1		1	1	
Taper Length (ft)	100				100	
Satd. Flow (prot)	1770	1583	5085	1583	1770	5085
Flt Permitted	0.950	1000	3003	1303	0.189	3003
Satd. Flow (perm)	1770	1583	5085	1583	352	5085
Right Turn on Red	1770	Yes	3003	Yes	332	3003
Satd. Flow (RTOR)		165		755		
	15	100	4 E	755		1E
Link Speed (mph)	45		45			45
Link Distance (ft)	647		1129			818
Travel Time (s)	9.8		17.1	0.04		12.4
Peak Hour Factor	0.82	0.82	0.84	0.84	0.89	0.89
Shared Lane Traffic (%)	_	_				
Lane Group Flow (vph)	318	293	1110	755	66	337
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA
Protected Phases	4		6		5	2
Permitted Phases		4		6	2	
Detector Phase	4	4	6	6	5	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	24.0	24.0	24.0	24.0	13.0	24.0
Total Split (s)	43.0	43.0	74.0	74.0	13.0	87.0
Total Split (%)	33.1%	33.1%	56.9%	56.9%	10.0%	66.9%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	٦.٥	7.0	Lag	Lag	Lead	4.0
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	Mono	Mono	Min	Min	None	Min
	None	None				Min
Act Effet Green (s)	26.3	26.3	54.6	54.6	64.1	64.1
Actuated g/C Ratio	0.26	0.26	0.55	0.55	0.65	0.65
v/c Ratio	0.68	0.54	0.40	0.62	0.18	0.10
Control Delay	44.0	19.7	14.4	3.6	8.5	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.0	19.7	14.4	3.6	8.5	7.1
LOS	D	В	В	Α	Α	Α
Approach Delay	32.3		10.0			7.3
Approach LOS	С		В			Α
Queue Length 50th (ft)	192	70	148	0	13	26
Queue Length 95th (ft)	292	142	209	31	37	50
Internal Link Dist (ft)	567		1049			738
Turn Bay Length (ft)		200		150	350	
Base Capacity (vph)	776	786	3646	1348	370	4134
Starvation Cap Reductn	0	0	0	0	0	0
						-

1: US 1 & Centreport Parkway

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.41	0.37	0.30	0.56	0.18	0.08

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 99.3

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.68 Intersection Signal Delay: 14.4 Intersection Capacity Utilization 50.1%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: US 1 & Centreport Parkway

	•	→	•	•	←	•	4	†	<i>></i>	/	ļ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		4		*	ተተ _ጉ		7	^	7
Traffic Volume (vph)	345	1	253	5	15	3	549	1218	12	2	392	167
Future Volume (vph)	345	1	253	5	15	3	549	1218	12	2	392	167
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		250	0		0	450		0	200		0
Storage Lanes	0		1	0		0	1		0	1		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	0	1773	1583	0	1811	0	1770	5080	0	1770	3539	1583
Flt Permitted		0.952			0.989		0.950			0.950		
Satd. Flow (perm)	0	1773	1583	0	1811	0	1770	5080	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)			293		4			1				
Link Speed (mph)		40			30			45			45	
Link Distance (ft)		578			688			983			1129	
Travel Time (s)		9.9			15.6			14.9			17.1	
Peak Hour Factor	0.85	0.85	0.85	0.48	0.48	0.48	0.83	0.83	0.83	0.69	0.69	0.69
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	407	298	0	47	0	661	1481	0	3	568	242
Turn Type	Split	NA	Perm	Split	NA		Prot	NA		Prot	NA	Perm
Protected Phases	4	4		3	3		1	6		5	2	
Permitted Phases			4									2
Detector Phase	4	4	4	3	3		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	16.0	16.0	16.0	13.0	13.0		16.0	16.0		16.0	16.0	16.0
Total Split (s)	35.0	35.0	35.0	13.0	13.0		55.0	66.0		16.0	27.0	27.0
Total Split (%)	26.9%	26.9%	26.9%	10.0%	10.0%		42.3%	50.8%		12.3%	20.8%	20.8%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)		-2.0	-2.0		-2.0		-2.0	-2.0		-2.0	-2.0	-2.0
Total Lost Time (s)		4.0	4.0		4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None		None	Min		None	Min	Min
Act Effct Green (s)		30.9	30.9		8.7		49.1	73.7		7.9	23.0	23.0
Actuated g/C Ratio		0.25	0.25		0.07		0.39	0.59		0.06	0.18	0.18
v/c Ratio		0.93	0.49		0.36		0.95	0.49		0.03	0.87	0.83
Control Delay		76.4	7.7		62.1		61.9	16.6		58.0	66.0	74.7
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	0.0
Total Delay		76.4	7.7		62.1		61.9	16.6		58.0	66.0	74.7
LOS		Ε	Α		Ε		Ε	В		Ε	Ε	Е
Approach Delay		47.4			62.1			30.6			68.6	
Approach LOS		D			Ε			С			Ε	
Queue Length 50th (ft)		341	3		35		535	244		2	250	200
Queue Length 95th (ft)		#497	60		39		#677	318		10	232	218
Internal Link Dist (ft)		498			608			903			1049	
Turn Bay Length (ft)			250				450			200		
Base Capacity (vph)		442	614		135		726	2994		171	655	293
Starvation Cap Reductn		0	0		0		0	0		0	0	0

Enon Road C-Store - Stafford County, VA 2: US 1 & Enon Road /Cranes Corner Road

Existing (2018) Conditions
Timing Plan: AM Peak Hour

	۶	→	•	•	←	•	•	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn		0	0		0		0	0		0	0	0
Storage Cap Reductn		0	0		0		0	0		0	0	0
Reduced v/c Ratio		0.92	0.49		0.35		0.91	0.49		0.02	0.87	0.83

Intersection Summary

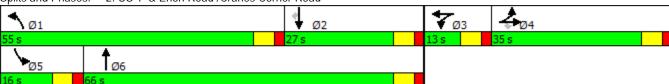
Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 125.1

Natural Cycle: 100

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.95 Intersection Signal Delay: 42.5 Intersection Capacity Utilization 77.1%

Intersection LOS: D
ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: US 1 & Enon Road /Cranes Corner Road

	•	•	†	/	\	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	^	7	ሻ	^ ^
Traffic Volume (vph)	584	74	404	367	144	1324
Future Volume (vph)	584	74	404	367	144	1324
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	200		150	350	
Storage Lanes	1	1		1	1	
Taper Length (ft)	100			•	100	
Satd. Flow (prot)	1770	1583	5085	1583	1770	5085
Flt Permitted	0.950	1000	0000	1000	0.433	0000
Satd. Flow (perm)	1770	1583	5085	1583	807	5085
Right Turn on Red	1770	Yes	0000	Yes	007	0000
Satd. Flow (RTOR)		42		386		
Link Speed (mph)	45	72	45	300		45
Link Speed (mph) Link Distance (ft)	658		1118			723
Travel Time (s)	10.0		16.9			11.0
Peak Hour Factor	0.92	0.92	0.95	0.95	0.90	0.90
Shared Lane Traffic (%)	0.72	0.72	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	635	80	425	386	160	1471
Turn Type	Prot	Perm	425 NA	Perm		NA
Protected Phases	2 Prot	reiiii		reiiii	pm+pt	NA 2
Permitted Phases	3	2	6	۷	5 2	Z
Detector Phase	3	3	4	6	2 5	2
Switch Phase	3	3	6	6	3	Z
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
* *						
Minimum Split (s)	24.0	24.0	24.0	24.0	13.0	24.0
Total Split (s)	61.0	61.0	60.0	60.0	34.0	94.0
Total Split (%)	39.4%	39.4%	38.7%	38.7%	21.9%	60.6%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None	None	C-Min	C-Min	None	C-Min
Act Effct Green (s)	63.5	63.5	64.7	64.7	83.5	83.5
Actuated g/C Ratio	0.41	0.41	0.42	0.42	0.54	0.54
v/c Ratio	0.88	0.12	0.20	0.44	0.30	0.54
Control Delay	56.4	14.1	24.6	6.0	20.5	24.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.4	14.1	24.6	6.0	20.5	24.5
LOS	E	В	С	Α	С	С
Approach Delay	51.6		15.7			24.1
Approach LOS	D		В			С
Queue Length 50th (ft)	580	23	84	41	82	351
Queue Length 95th (ft)	735	56	157	199	131	415
Internal Link Dist (ft)	578		1038			643
Turn Bay Length (ft)	3.3	200		150	350	3.0
Base Capacity (vph)	724	673	2125	886	621	2952
Starvation Cap Reductn	0	0/3	0	0	021	0
Ciai valion Sap Neducin	U	<u> </u>	0	0	0	U

	•	•	†	/	\	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.88	0.12	0.20	0.44	0.26	0.50

Area Type: Other

Cycle Length: 155 Actuated Cycle Length: 155

Offset: 80 (52%), Referenced to phase 2:SBTL and 6:NBT, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 28.2 Intersection Capacity Utilization 64.6%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 1: US 1 & Centreport Parkway

	۶	→	•	•	+	•	•	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		4		7	ተተኈ		7	^	7
Traffic Volume (vph)	182	5	200	5	1	1	169	588	7	4	1535	369
Future Volume (vph)	182	5	200	5	1	1	169	588	7	4	1535	369
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		250	0		0	450		0	200		0
Storage Lanes	0		1	0		0	1		0	1		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	0	1777	1583	0	1763	0	1770	5075	0	1770	3539	1583
Flt Permitted		0.954			0.966		0.950			0.950		
Satd. Flow (perm)	0	1777	1583	0	1763	0	1770	5075	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			213		3			2				283
Link Speed (mph)		40			30			45			45	
Link Distance (ft)		580			688			1006			1118	
Travel Time (s)		9.9			15.6			15.2			16.9	
Peak Hour Factor	0.94	0.94	0.94	0.35	0.35	0.35	0.88	0.88	0.88	0.92	0.92	0.92
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	199	213	0	20	0	192	676	0	4	1668	401
Turn Type	Split	NA	Perm	Split	NA		Prot	NA		Prot	NA	Perm
Protected Phases	4	4		3	3		1	6		5	2	
Permitted Phases			4									2
Detector Phase	4	4	4	3	3		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	16.0	16.0	16.0	13.0	13.0		13.0	16.0		13.0	16.0	16.0
Total Split (s)	14.0	14.0	14.0	21.0	21.0		25.0	106.0		14.0	95.0	95.0
Total Split (%)	9.0%	9.0%	9.0%	13.5%	13.5%		16.1%	68.4%		9.0%	61.3%	61.3%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)		-2.0	-2.0		-2.0		-2.0	-2.0		-2.0	-2.0	-2.0
Total Lost Time (s)		4.0	4.0		4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None		None	C-Min		None	C-Min	C-Min
Act Effct Green (s)		23.9	23.9		9.1		20.3	112.1		8.0	90.4	90.4
Actuated g/C Ratio		0.15	0.15		0.06		0.13	0.72		0.05	0.58	0.58
v/c Ratio		0.73	0.50		0.19		0.83	0.18		0.04	0.81	0.39
Control Delay		78.3	12.1		65.1		93.5	7.2		91.8	29.6	3.9
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.3	0.0
Total Delay		78.3	12.1		65.1		93.5	7.2		91.8	29.9	3.9
LOS		Ε	В		Ε		F	Α		F	С	Α
Approach Delay		44.0			65.1			26.3			25.0	
Approach LOS		D			Ε			С			С	
Queue Length 50th (ft)		204	0		17		192	65		4	795	65
Queue Length 95th (ft)		#399	84		16		#307	106		m7	901	m22
Internal Link Dist (ft)		500			608			926			1038	
Turn Bay Length (ft)			250				450			200		
Base Capacity (vph)		274	424		196		239	3670		114	2077	1046
Starvation Cap Reductn		0	0		0		0	0		0	86	0

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn		0	0		0		0	0		0	0	0
Storage Cap Reductn		0	0		0		0	0		0	0	0
Reduced v/c Ratio		0.73	0.50		0.10		0.80	0.18		0.04	0.84	0.38

Area Type: Other

Cycle Length: 155 Actuated Cycle Length: 155

Offset: 53 (34%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.83 Intersection Signal Delay: 27.9 Intersection Capacity Utilization 74.9%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: US 1 & Enon Road /Cranes Corner Road

	•	•	†	~	/	+
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	^	7	*	^ ^
Traffic Volume (vph)	272	282	984	662	66	316
Future Volume (vph)	272	282	984	662	66	316
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	200		150	350	
Storage Lanes	1	1		1	1	
Taper Length (ft)	100				100	
Satd. Flow (prot)	1770	1583	5085	1583	1770	5085
Flt Permitted	0.950				0.175	
Satd. Flow (perm)	1770	1583	5085	1583	326	5085
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		155		759		
Link Speed (mph)	45		45	, , ,		45
Link Distance (ft)	647		1129			818
Travel Time (s)	9.8		17.1			12.4
Peak Hour Factor	0.82	0.82	0.84	0.84	0.89	0.89
Shared Lane Traffic (%)	0.02	0.02	0.07	0.07	0.07	0.07
Lane Group Flow (vph)	332	344	1171	788	74	355
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA
Protected Phases	4	i OIIII	6	i ciiii	рит-ра 5	2
Permitted Phases	7	4	U	6	2	۷
Detector Phase	4	4	6	6	5	2
Switch Phase	т	7	U	U	3	۷
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	24.0	24.0	24.0	24.0	13.0	24.0
Total Split (s)	44.0	44.0	73.0	73.0	13.0	86.0
Total Split (%)	33.8%	33.8%	56.2%	56.2%	10.0%	66.2%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
• •	-2.0 -2.0		-2.0		-2.0	-2.0
Lost Time Adjust (s)		-2.0		-2.0		
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag Optimize?			Lag	Lag	Lead	
Lead-Lag Optimize?	Name	Mara	Yes	Yes	Yes	N A!
Recall Mode	None	None	Min	Min	None	Min
Act Effet Green (s)	27.9	27.9	57.5	57.5	66.9	66.9
Actuated g/C Ratio	0.27	0.27	0.55	0.55	0.65	0.65
v/c Ratio	0.70	0.64	0.42	0.65	0.22	0.11
Control Delay	45.3	25.5	15.1	4.3	9.2	7.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.3	25.5	15.1	4.3	9.2	7.5
LOS	D	С	В	Α	Α	Α
Approach Delay	35.2		10.7			7.8
Approach LOS	D		В			Α
Queue Length 50th (ft)	224	125	173	9	17	30
Queue Length 95th (ft)	304	196	227	44	42	54
Internal Link Dist (ft)	567		1049			738
Turn Bay Length (ft)		200		150	350	
Base Capacity (vph)	753	762	3480	1323	348	3945
Starvation Cap Reductn	0	0	0	0	0	0

Ť <u>N</u>BR Lane Group **WBR SBL SBT WBL** NBT Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.44 0.45 0.34 0.60 0.21 0.09

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 103.7

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 15.7 Intersection Capacity Utilization 51.8%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: US 1 & Centreport Parkway

Lane Configurations Traffic Volume (vph) 359 1 263 11 19 9 571 1278 14 4 410 177 Fulure Volume (vph) 359 1 263 11 19 9 571 1278 14 4 410 177 Fulure Volume (vph) 1900 190		•	→	•	€	+	•	•	†	~	/	ţ	-√
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations		ર્ન	7		4		¥	ተተ _ጉ		¥	^	7
Ideal Flow (vphpl)	Traffic Volume (vph)	359		263	11	19	9	571		14	4		174
Ideal Flow (vphpl)	Future Volume (vph)	359	1	263	11	19	9	571	1278	14	4	410	174
Storage Lanes		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes	Storage Length (ft)	0		250	0		0	450		0	200		0
Taper Length (ft) 100 100 1773 1583 0 1780 0 1770 5075 0 1770 3539 1583 Flt Permitted 0.952 0.986 0.950 0.950 0.950 1583 1583 0 1780 0.950 0.950 0.950 1583 1583 1583 0.986 0.950 0.950 0.950 1583 1583 1583 0.986 0.950 0.950 0.950 1583 1583 1583 0.986 0.950 0.950 0.950 1583 1583 1583 0.986 0.950 0.770 5075 0 1770 3539 1583 1583 1583 1583 0.981 1583 0.981 1583 0.981 0.881 0.881 0.881 1583		0		1	0		0	1		0	1		1
Said. Flow (prot) 0 1773 1583 0 1780 0 1770 5075 0 1770 3539 1583 Fit Permitted 0.952 0.952 0.986 0.950 0.950 0.950 0.950 Said. Flow (perm) 0 1773 1583 0 1780 0 1770 5075 0 1770 3539 1583 Right Turn on Red Yes		100			100			100			100		
Fit Permitted		0	1773	1583	0	1780	0	1770	5075	0	1770	3539	1583
Right Turn on Red Yes Yes Yes No. Satd. Flow (RTOR) 295 99 22 2 45			0.952			0.986		0.950			0.950		
Right Turn on Red Yes Yes Yes No. Satd. Flow (RTOR) 295 99 22 2 45	Satd. Flow (perm)	0	1773	1583	0	1780	0	1770	5075	0	1770	3539	1583
Satd. Flow (RTOR) 295 9 2 Link Speed (mph) 40 30 45 45 45 Link Distance (ft) 578 8 688 817 1129 1129 Travel Time (s) 9.9 15.6 12.4 17.1 17.1 17.1 Peak Hour Factor 0.85 0.85 0.85 0.48 0.48 0.83 0.88 0.69 0.88 0.69 Shared Lane Traffic (%) Lane Group Flow (vph) 0 423 309 0 82 0 688 1469 0 6 466 252 Turn Type Split NA Perm Split NA Prot NA Prot NA Perm Protected Phases 4 4 3 3 1 6 5 2 2 Detector Phase 4 4 3 3 5 5 5 5 2 2 Switch Phase 4 4 <td>•</td> <td></td> <td></td> <td>Yes</td> <td></td> <td></td> <td>Yes</td> <td></td> <td></td> <td>Yes</td> <td></td> <td></td> <td>No</td>	•			Yes			Yes			Yes			No
Link Speed (mph)						9			2				
Link Distance (ft) 578 688 817 1129 Travel Time (s) 9.9 15.6 12.4 17.1 Peak Hour Factor 0.85 0.85 0.85 0.48 0.48 0.48 0.83 0.89 0.69 0.88 0.69 Shared Lane Traffic (%) Lane Group Flow (vph) 0 423 309 0 82 0 688 1469 0 6 466 252 Turn Type Split NA Perm Split NA Prote NA NA Prote NA NA Prot NA <t< td=""><td></td><td></td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45</td><td></td></t<>			40									45	
Travel Time (s) 9.9 15.6 12.4 17.1 17.1 Peak Hour Factor 0.85 0.85 0.85 0.48 0.48 0.83 0.88 0.69 0.88 0.69 Shared Lane Traffic (%) Lane Group Flow (vph) 0 423 309 0 82 0 688 1469 0 6 466 252 Turn Type Split NA Perm Split NA Prot NA NA NA NA NA<													
Peak Hour Factor 0.85 0.85 0.85 0.48 0.48 0.48 0.83 0.83 0.69 0.88 0.69 Shared Lane Traffic (%) Lane Group Flow (vph) 0 423 309 0 82 0 688 1469 0 6 466 252 Turn Type Split NA Perm Split NA Prote NA Prot NA Perm Protected Phases 4 4 3 3 1 6 5 2 Permitted Phases 4 4 3 3 1 6 5 2 2 Detector Phase 4 4 4 3 3 1 6 5 2 2 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0													
Shared Lane Traffic (%) Lane Group Flow (vph) 0 423 309 0 82 0 688 1469 0 6 466 252 Turn Type Split NA Perm Split NA Prot NA Prot NA Prot NA Perm Perm Split NA Perm Perm Split NA Prot NA Prot NA Prot NA Perm Perm Perm Split NA Prot NA Prot NA Prot NA Perm Perm Split NA Perm Split	` ,	0.85		0.85	0.48		0.48	0.83		0.83	0.69		0.69
Lane Group Flow (vph) 0 423 309 0 82 0 688 1469 0 6 466 252 Turn Type Split NA Perm Split NA Prot NA Prot NA Perm Protected Phases 4 4 3 3 1 6 5 2 2 Permitted Phases 4 4 4 3 3 1 6 5 2 2 Switch Phase 4 4 4 3 5.0													
Turn Type Split NA Perm Split NA Prot NA Prot NA Prot NA Perm Protected Phases 4 4 3 3 1 6 5 2 2 Permitted Phases 4 4 4 3 3 1 6 5 2 2 2 Switch Phase 4 4 4 3 3 1 6 5 2 2 2 Minimum Initial (s) 5.0	* *	0	423	309	0	82	0	688	1469	0	6	466	252
Protected Phases 4 4 3 3 1 6 5 2 Permitted Phases 4 4 4 3 3 1 6 5 2 2 Detector Phase 4 4 4 3 3 1 6 5 2 2 Switch Phase Minimum Initial (s) 5.0		Split									Prot		Perm
Permitted Phases 4 4 4 3 3 1 6 5 2 2 Switch Phase Switch Pha		•			-								
Detector Phase 4 4 4 4 3 3 1 6 5 2 2 Switch Phase Minimum Initial (s) 5.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 26.0 26.0 26.0 26.0 26.0 27.7% 27.7% 27.7% 10.0% 10.0% 42.3% 50.0% 12.3% 20.0% 20.0% 20.0% 20		•		4	_			•			_	_	2
Switch Phase Minimum Initial (s) 5.0 6.0 16.0 16.0 16.0 16.0 20.0		4	4		3	3		1	6		5	2	2
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 16.0 16.0 16.0 13.0 13.0 16.0 26.													
Minimum Split (s) 16.0 16.0 16.0 13.0 13.0 16.0 26.0 <td></td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td>5.0</td> <td></td> <td>5.0</td> <td>5.0</td> <td></td> <td>5.0</td> <td>5.0</td> <td>5.0</td>		5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Total Split (s) 36.0 36.0 36.0 13.0 13.0 13.0 55.0 65.0 16.0 26.0 26.0 Total Split (%) 27.7% 27.7% 10.0% 10.0% 42.3% 50.0% 12.3% 20.0% 20.0% Yellow Time (s) 4.0		16.0	16.0	16.0	13.0	13.0		16.0	16.0			16.0	16.0
Total Split (%) 27.7% 27.7% 10.0% 10.0% 42.3% 50.0% 12.3% 20.0% 20.0% Yellow Time (s) 4.0		36.0	36.0	36.0	13.0	13.0		55.0	65.0		16.0	26.0	26.0
Yellow Time (s) 4.0		27.7%	27.7%	27.7%	10.0%	10.0%		42.3%	50.0%		12.3%	20.0%	20.0%
Lost Time Adjust (s) -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
	All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0
Total Last Time (s) 40 40 40 40 40 40	Lost Time Adjust (s)		-2.0	-2.0		-2.0		-2.0	-2.0		-2.0	-2.0	-2.0
TUTAL LUST TITLE (S) 4.U	Total Lost Time (s)		4.0	4.0		4.0		4.0	4.0		4.0	4.0	4.0
		Lag	Lag	Lag	Lead	Lead		Lead	Lag		Lead	Lag	Lag
	Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Recall Mode None None None None None Min None Min Mir	Recall Mode	None	None	None	None	None		None	Min		None	Min	Min
													22.0
													0.17
	ŭ .												0.94
			84.7					71.4				61.6	95.7
· · · · · · · · · · · · · · · · · · ·			0.0										0.0
y	3							71.4					95.7
J contract the contract to the													F
Approach Delay 52.5 74.0 35.0 73.4			52.5										
Approach LOS D E D E						Ε			D			Ε	
Queue Length 50th (ft) 355 9 61 571 246 5 200 212	Queue Length 50th (ft)		355	9		61		571	246		5	200	212
			#513	66		57		#721	352		15	255	#229
Internal Link Dist (ft) 498 608 737 1049													
Turn Bay Length (ft) 250 450 200	` ,			250				450			200		
			436			131			2906			599	267
													0

Enon Road C-Store - Stafford County, VA 2: US 1 & Enon Road /Cranes Corner Road

No-Build (2020) Conditions Timing Plan: AM Peak Hour

	۶	→	\rightarrow	•	←	•	•	†	/	\	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn		0	0		0		0	0		0	0	0
Storage Cap Reductn		0	0		0		0	0		0	0	0
Reduced v/c Ratio		0.97	0.50		0.63		0.99	0.51		0.04	0.78	0.94

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 129.9

Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.99 Intersection Signal Delay: 46.9 Intersection Capacity Utilization 79.6%

Intersection LOS: D
ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	4	†	~	/	+
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u> </u>	7	^	7	<u> </u>	↑
Traffic Volume (vph)	610	81	422	384	173	1388
Future Volume (vph)	610	81	422	384	173	1388
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	200	1700	150	350	1700
Storage Lanes	1	1		130	1	
Taper Length (ft)	100				100	
Satd. Flow (prot)	1770	1583	5085	1583	1770	5085
Flt Permitted	0.950	1303	3063	1303	0.414	3063
		1500	EOOE	1502		EOOE
Satd. Flow (perm)	1656	1583	5085	1583	771	5085
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		44		404		
Link Speed (mph)	45		45			45
Link Distance (ft)	658		1118			723
Travel Time (s)	10.0		16.9			11.0
Confl. Peds. (#/hr)	79					
Peak Hour Factor	0.92	0.92	0.95	0.95	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	663	88	444	404	192	1542
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA
Protected Phases	3		6		5	2
Permitted Phases		3		6	2	
Detector Phase	3	3	6	6	5	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	24.0	24.0	24.0	24.0	13.0	24.0
Total Split (s)	61.0	61.0	60.0	60.0	34.0	94.0
Total Split (%)	39.4%	39.4%	38.7%	38.7%	21.9%	60.6%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Lost Time Adjust (s) Total Lost Time (s)	-2.0 4.0	-2.0 4.0	-2.0 4.0	-2.0 4.0	-2.0 4.0	-2.0 4.0
• • •	4.0	4.0				4.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?	N.I.		Yes	Yes	Yes	0.14
Recall Mode	None	None	C-Min	C-Min	None	C-Min
Act Effct Green (s)	66.6	66.6	59.8	59.8	80.4	80.4
Actuated g/C Ratio	0.43	0.43	0.39	0.39	0.52	0.52
v/c Ratio	0.87	0.12	0.23	0.47	0.38	0.58
Control Delay	54.1	14.7	27.0	7.0	22.4	26.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	54.1	14.7	27.0	7.0	22.4	26.8
LOS	D	В	С	Α	С	С
Approach Delay	49.4		17.5			26.3
Approach LOS	D		В			С
Queue Length 50th (ft)	605	26	127	45	103	387
Queue Length 95th (ft)	#866	64	m156	m196	148	418
Internal Link Dist (ft)	578	31	1038	,0	. 10	643
Turn Bay Length (ft)	070	200	1000	150	350	010
Base Capacity (vph)	760	705	1961	858	593	2952
pase Capacity (VpH)	700	700	1701	000	573	2702

WBR SBL Lane Group **WBL** NBT **NBR SBT** Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 23 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.87 0.12 0.32 0.53 0.23 0.47

Intersection Summary

Area Type: Other

Cycle Length: 155

Actuated Cycle Length: 155

Offset: 80 (52%), Referenced to phase 2:SBTL and 6:NBT, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87 Intersection Signal Delay: 29.3 Intersection Capacity Utilization 67.3%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: US 1 & Centreport Parkway

	۶	→	•	•	←	•	4	†	<i>></i>	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		4		7	ተተኈ		7	†	7
Traffic Volume (vph)	189	8	208	9	2	5	176	612	12	10	1604	384
Future Volume (vph)	189	8	208	9	2	5	176	612	12	10	1604	384
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		250	0		0	450		0	200		0
Storage Lanes	0		1	0		0	1		0	1		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	0	1777	1583	0	1738	0	1770	5070	0	1770	3539	1583
Flt Permitted		0.954			0.973		0.950			0.950		
Satd. Flow (perm)	0	1777	1583	0	1738	0	1770	5070	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			221		11			4				281
Link Speed (mph)		40			30			45			45	
Link Distance (ft)		580			688			842			1118	
Travel Time (s)		9.9			15.6			12.8			16.9	
Peak Hour Factor	0.94	0.94	0.94	0.35	0.35	0.35	0.88	0.88	0.88	0.92	0.92	0.92
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	210	221	0	46	0	200	709	0	11	1743	417
Turn Type	Split	NA	Perm	Split	NA		Prot	NA		Prot	NA	Perm
Protected Phases	4	4		3	3		1	6		5	2	
Permitted Phases			4									2
Detector Phase	4	4	4	3	3		1	6		5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	16.0	16.0	16.0	13.0	13.0		13.0	16.0		13.0	16.0	16.0
Total Split (s)	14.0	14.0	14.0	21.0	21.0		25.0	106.0		14.0	95.0	95.0
Total Split (%)	9.0%	9.0%	9.0%	13.5%	13.5%		16.1%	68.4%		9.0%	61.3%	61.3%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)		-2.0	-2.0		-2.0		-2.0	-2.0		-2.0	-2.0	-2.0
Total Lost Time (s)		4.0	4.0		4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lag	Lag	Lag	Lead	Lead		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None		None	C-Min		None		C-Min
Act Effct Green (s)		19.3	19.3		10.6		20.5	109.9		8.5	90.8	90.8
Actuated g/C Ratio		0.12	0.12		0.07		0.13	0.71		0.05	0.59	0.59
v/c Ratio		0.95	0.57		0.36		0.86	0.20		0.11	0.84	0.40
Control Delay		113.5	13.9		61.2		96.6	8.2		85.0	28.4	2.9
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.4	0.0
Total Delay		113.5	13.9		61.2		96.6	8.2		85.0	28.8	2.9
LOS		F	В		Ε		F	Α		F	С	Α
Approach Delay		62.4			61.2			27.6			24.1	
Approach LOS		Е			Ε			С			С	
Queue Length 50th (ft)		~242	0		34		200	68		11	865	14
Queue Length 95th (ft)		#461	87		23		#325	114		m19	943	m34
Internal Link Dist (ft)		500			608			762			1038	
Turn Bay Length (ft)			250				450			200		
Base Capacity (vph)		221	390		200		239	3596		114	2077	1045
Starvation Cap Reductn		0	0		0		0	0		0	70	0

	۶	→	\rightarrow	•	←	•	•	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn		0	0		0		0	0		0	0	0
Storage Cap Reductn		0	0		0		0	0		0	0	0
Reduced v/c Ratio		0.95	0.57		0.23		0.84	0.20		0.10	0.87	0.40

Area Type: Other

Cycle Length: 155 Actuated Cycle Length: 155

Offset: 53 (34%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95 Intersection Signal Delay: 30.1 Intersection Capacity Utilization 81.0%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: US 1 & Enon Road /Cranes Corner Road

	•	•	†	/	\	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u> </u>	7	^	7	ሻ	^
Traffic Volume (vph)	292	282	1002	682	66	335
Future Volume (vph)	292	282	1002	682	66	335
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	200		150	350	
Storage Lanes	1	1		1	1	
Taper Length (ft)	100				100	
Satd. Flow (prot)	1770	1583	5085	1583	1770	5085
Flt Permitted	0.950				0.177	
Satd. Flow (perm)	1770	1583	5085	1583	330	5085
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		151		755		
Link Speed (mph)	40		45			45
Link Distance (ft)	633		1131			886
Travel Time (s)	10.8		17.1			13.4
Peak Hour Factor	0.82	0.82	0.84	0.84	0.89	0.89
Shared Lane Traffic (%)	0.02	0.02	0.04	5.0₹	5.07	0.07
Lane Group Flow (vph)	356	344	1193	812	74	376
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA
Protected Phases	4	1 (1111	6	i ciiii	ріпі+рі 5	2
Permitted Phases	т	4	U	6	2	۷
Detector Phase	4	4	6	6	5	2
Switch Phase	7	7	U	U	3	۷
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	16.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	45.0	45.0	72.0	72.0	13.0	85.0
Total Split (%)	34.6%	34.6%	55.4%	55.4%	10.0%	65.4%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
• • • •	-2.0 4.0		-2.0 4.0	-2.0 4.0	-2.0 4.0	-2.0 4.0
Total Lost Time (s)	4.0	4.0				4.0
Lead/Lag Ontimize?			Lag	Lag	Lead	
Lead-Lag Optimize?	Mana	None	Yes	Yes	Yes	N //:
Recall Mode	None	None	C-Min	C-Min	None	Min
Act Effet Green (s)	33.4	33.4	78.0	78.0	88.6	88.6
Actuated g/C Ratio	0.26	0.26	0.60	0.60	0.68	0.68
v/c Ratio	0.78	0.66	0.39	0.65	0.23	0.11
Control Delay	56.9	29.3	15.5	4.6	9.8	7.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.9	29.3	15.5	4.6	9.8	7.9
LOS	E	С	В	Α	Α	А
Approach Delay	43.3		11.1			8.2
Approach LOS	D		В			Α
Queue Length 50th (ft)	278	146	196	20	19	37
Queue Length 95th (ft)	324	197	236	57	43	58
Internal Link Dist (ft)	553		1051			806
Turn Bay Length (ft)		200		150	350	
Base Capacity (vph)	558	602	3050	1251	327	3464
Starvation Cap Reductn	0	0	0	0	0	0

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.64	0.57	0.39	0.65	0.23	0.11

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 6:NBT, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.78 Intersection Signal Delay: 17.8 Intersection Capacity Utilization 53.1%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: US 1 & Centreport Parkway

	۶	→	•	•	←	•	4	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	f)			4		¥	ተተ _ጉ		7	^	7
Traffic Volume (vph)	498	1	263	11	19	9	709	1179	14	4	445	179
Future Volume (vph)	498	1	263	11	19	9	709	1179	14	4	445	179
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350		250	0		0	450		0	200		0
Storage Lanes	2		0	0		0	1		0	1		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	3433	1583	0	0	1780	0	1770	5075	0	1770	3539	1583
Flt Permitted	0.950				0.986		0.950			0.950		
Satd. Flow (perm)	3433	1583	0	0	1780	0	1770	5075	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)		309			9			2				
Link Speed (mph)		40			30			45			45	
Link Distance (ft)		686			688			479			1131	
Travel Time (s)		11.7			15.6			7.3			17.1	
Peak Hour Factor	0.85	0.85	0.85	0.48	0.48	0.48	0.83	0.88	0.83	0.69	0.88	0.69
Shared Lane Traffic (%)												
Lane Group Flow (vph)	586	310	0	0	82	0	854	1357	0	6	506	259
Turn Type	Split	NA	ŭ	Split	NA	ŭ	Prot	NA	ŭ	Prot	NA	pm+ov
Protected Phases	4	4		3	3		1	6		5	2	4
Permitted Phases		·		Ū	· ·			· ·		ū	_	2
Detector Phase	4	4		3	3		1	6		5	2	4
Switch Phase	•	•		Ü	Ü			Ü		Ü	_	•
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	16.0	16.0		13.0	13.0		13.0	16.0		13.0	16.0	16.0
Total Split (s)	28.0	28.0		13.0	13.0		65.0	76.0		13.0	24.0	28.0
Total Split (%)	21.5%	21.5%		10.0%	10.0%		50.0%	58.5%		10.0%	18.5%	21.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0		2.0	-2.0		-2.0	-2.0		-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0			4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lead	Lead		Lag	Lag		Lead	Lag		Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None		None	None		None	Min		None	Min	None
Act Effct Green (s)	24.0	24.0		110110	8.9		61.0	82.4		8.1	20.0	48.0
Actuated g/C Ratio	0.18	0.18			0.07		0.47	0.63		0.06	0.15	0.37
v/c Ratio	0.92	0.57			0.63		1.03	0.42		0.06	0.93	0.44
Control Delay	73.6	9.5			74.0		73.0	12.8		58.0	78.9	33.9
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	73.6	9.5			74.0		73.0	12.8		58.0	78.9	33.9
LOS	73.0 E	λ.5			74.0 E		73.0 E	12.0 B		50.0 E	70.7 E	C
Approach Delay	L	51.4			74.0		L	36.1		L	63.6	C
Approach LOS		D			74.0 E			50.1 D			65.6 E	
Queue Length 50th (ft)	253	1			61		~768	183		5	224	163
Queue Length 95th (ft)	#324	62			57		#882	275		15	#317	176
Internal Link Dist (ft)	# 324	606			608		#00Ζ	399		13	1051	170
Turn Bay Length (ft)	350	000			000		450	377		200	1051	
		E11			131		831	3219			E11	E01
Base Capacity (vph)	634	544								122	544	584
Starvation Cap Reductn	0	0			0		0	0		0	0	0

	•	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0			0		0	0		0	0	0
Storage Cap Reductn	0	0			0		0	0		0	0	0
Reduced v/c Ratio	0.92	0.57			0.63		1.03	0.42		0.05	0.93	0.44

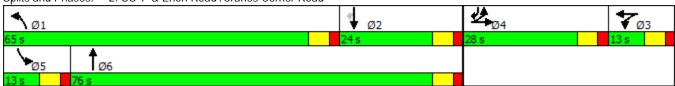
Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 129.9

Natural Cycle: 120

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 1.03 Intersection Signal Delay: 45.7 Intersection Capacity Utilization 82.5%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: US 1 & Enon Road / Cranes Corner Road

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		ተተተ	^	7
Traffic Vol, veh/h	0	72	0	1902	651	68
Future Vol, veh/h	0	72	0	1902	651	68
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	_	0	_	-	_	200
Veh in Median Storage,		-	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	83	83	70	70
Heavy Vehicles, %	2	2	2	2	2	2
		78				97
Mvmt Flow	0	78	0	2292	930	97
Major/Minor N	linor2	N	/lajor1	N	/lajor2	
Conflicting Flow All	-	465	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	_	-	_	-	_	-
Critical Hdwy	_	6.94	_	_	_	_
Critical Hdwy Stg 1	_	-	_	_	_	_
Critical Hdwy Stg 2	_	_		_	_	_
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	5.32 544	_	-	-	-
	0		0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	544	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
-						
Approach	EB		NB		SB	
HCM Control Delay, s	12.7		0		0	
HCM LOS	В		J		J	
HOW LOS	D					
			-D	-20	055	
Minor Lane/Major Mvmt		NBT E		SBT	SBR	
Capacity (veh/h)		-	544	-	-	
HCM Lane V/C Ratio		-	0.144	-	-	
HCM Control Delay (s)		-	12.7	-	-	
HCM Lane LOS		-	В	-	-	
HCM 95th %tile Q(veh)		-	0.5	-	-	
. ,						

Intersection							
Int Delay, s/veh	6.4						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ĵ,		7	<u></u>	ř	7	
Traffic Vol, veh/h	606	36	160	747	36	156	
Future Vol, veh/h	606	36	160	747	36	156	
Conflicting Peds, #/hr	0	0	0	0	0	0	
0	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length		-	100	-	0	0	
Veh in Median Storage,		-	-	0	0	-	
Grade, %	0	- 05	-	0	0	-	
Peak Hour Factor	85	85	82	82	92	92	
Heavy Vehicles, %	2	2	2 10E	2	2	2 170	
Mvmt Flow	713	42	195	911	39	170	
	ajor1		Major2		/linor1		
Conflicting Flow All	0	0	755	0	2035	734	
Stage 1	-	-	-	-	734	-	
Stage 2	-	-	-	-	1301	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	- 2 210	-	5.42	2 210	
Follow-up Hdwy Pot Cap-1 Maneuver	-	-	2.218 855	-	3.518	3.318 420	
•	-	-	000	-	475	420	
Stage 1 Stage 2	-	-	-	-	255	-	
Platoon blocked, %	-	-	-	-	200	-	
Mov Cap-1 Maneuver	-	-	855	_	49	420	
Mov Cap-1 Maneuver	_	-	-	_	49	7ZU -	
Stage 1	_	_	_	_	475	_	
Stage 2	_	_	_	_	197	_	
Olugo Z					177		
Approach	EB		WB		NB		
HCM Control Delay, s	0		1.8		53.5		
HCM LOS	U		1.0		55.5 F		
Minor Lane/Major Mvmt	1	NBLn1 N	VBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)		49	420		-	855	-
HCM Lane V/C Ratio		0.799		_		0.228	_
HCM Control Delay (s)		201.8	19.3	_	_	10.5	_
HCM Lane LOS		F	C	_	_	В	_
HCM 95th %tile Q(veh)		3.3	1.9	_	-	0.9	-

Switch Phase Minimum Initial (s) 5.0 4.0		•	4	†	~	/	+
Lane Configurations 1	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Volume (vph) 624 81 436 398 173 1402 Future Volume (vph) 624 81 436 398 173 1402 (deal Flow (vphpl)) 1900 1900 1900 1900 1900 1900 1900 Storage Length (ft) 0 200 150 350 350 100 Storage Length (ft) 100 5364 Flow (vphp) 1770 1583 5085 1583 1770 5085 1584 Flow (vphp) 1770 1583 5085 1583 1770 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 5085 1584 Flow (perm) 1770 1583 5085 1583 745 1583 1409 1409 1409 1409 1409 1409 1409 1409							
Future Volume (vph)							
Ideal Flow (vphpl)							
Storage Length (ft) 0 200 150 350 Storage Lanes 1							
Storage Lanes				1700			1700
Taper Length (ft) 100							
Satd. Flow (prot) 1770 1583 5085 1583 1770 5085 Fl Permitted 0.950 0.400 5085 1583 745 5085 Right Turn on Red Yes Yes Yes Yes 5085 1583 745 5085 Right Turn on Red Yes Yes Yes Yes Yes 5085 1583 745 5085 5085 1583 745 5085 5085 1583 745 5085 5085 745 5085 5085 745 5085 5085 745 5085 745 5085 745 5085 745 5085 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 5085 745 745 745 745 745 745 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Fit Permitted Satd. Flow (perm) Fit Permitted Satd. Flow (RTOR) Link Speed (mph) Link Speed (mph) Link Distance (ft) Fit Satd. Flow (RTOR) Link Speed (mph) Link Speed (mph) Link Distance (ft) Fit Satd. Flow (RTOR) Link Speed (mph) Link Distance (ft) Link Speed (mph) Link Distance (ft) Link Speed (mph) Link Dist (mph) Link Speed (mph) Link Speed (mph) Link Speed (mph) Link Dist (mph) Link Speed (mph) Link Dist (mph)			1583	5085	1583		5085
Satd. Flow (perm) 1770 1583 5085 1583 745 5085 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 43 419 45 45 45 45 45 45 45 1121 947 177 (mm) 1121 947 177 (mm) 1121 947 177 (mm) 114,3 947 177 (mm) 1121 947 177 (mm) 114,3 947 177 (mm) 14,3 419 192 1558 150 150 150			1303	3003	1303		3003
Right Turn on Red Satd. Flow (RTOR) Yes Yes Yes Link Speed (mph) 45 45 45 Link Distance (ft) 659 1121 947 Travel Time (s) 10.0 17.0 0.90 0.90 Shared Lane Traffic (%) 88 459 419 192 1558 Turn Type Prot Perm NA Perm pm+pt NA Protected Phases 3 6 2 2 2 2 Permitted Phases 3 6 5 2 2 2 3 6 5 2 2 2 2 3 6 5 2 2 2 2 2 3 6 6 2			1593	5085	1503		5085
Satd. Flow (RTOR) 43 419 45 41 43 47 47 47 43 43 48 459 419 192 1558 14 192 1558 150 50 50 50 50 50 50 50 50 50 50 50 20 <t< td=""><td></td><td>1770</td><td></td><td>3003</td><td></td><td>743</td><td>3003</td></t<>		1770		3003		743	3003
Link Speed (mph)							
Link Distance (ft) 659 1121 947 Travel Time (s) 10.0 17.0 14.3 Peak Hour Factor 0.92 0.92 0.95 0.95 0.90 0.90 Shared Lane Traffic (%) Lane Group Flow (vph) 678 88 459 419 192 1558 Turn Type Prot Perm NA Perm pm+pt NA Protected Phases 3 6 5 2 Permitted Phases 3 6 5 2 Permitted Phases 3 6 5 2 Detector Phase 3 3 6 5 2 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 16.0 16.0 16.0 16.0 16.0 16.0 13.0 16.0 Total Split (s) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 <td< td=""><td></td><td>15</td><td>43</td><td>4E</td><td>419</td><td></td><td>15</td></td<>		15	43	4 E	419		15
Travel Time (s) 10.0 17.0 14.3 Peak Hour Factor 0.92 0.92 0.95 0.95 0.90 0.90 Shared Lane Traffic (%) Lane Group Flow (vph) 678 88 459 419 192 1558 Turn Type Prot Perm NA Perm pm+pt NA Permitted Phases 3 6 5 2 Permitted Phases 3 6 5 2 Detector Phase 3 3 6 5 2 Switch Phase Minimum Initial (s) 5.0							
Peak Hour Factor Shared Lane Traffic (%) 0.92 0.92 0.95 0.95 0.90 0.90 Shared Lane Traffic (%) 88 459 419 192 1558 Turn Type Prot Perm NA Perm pm+pt NA Protected Phases 3 6 5 2 Detector Phase 3 6 5 2 Switch Phase 3 6 6 5 2 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 16.0 16.0 16.0 16.0 16.0 13.0 16.0 Total Split (s) 61.0 61.0 60.0 60.0 34.0 94.0 Total Split (%) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0	• •						
Shared Lane Traffic (%) Lane Group Flow (vph) 678 88 459 419 192 1558 Turn Type Prot Perm NA Perm pm+pt NA Protected Phases 3 6 5 2 Permitted Phases 3 6 5 2 Detector Phase 3 3 6 5 2 Switch Phase 3 3 6 5 2 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 16.0 16.0 16.0 16.0 16.0 13.0 16.0 Total Split (s) 61.0 61.0 60.0 60.0 34.0 94.0 Total Split (s) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 </td <td></td> <td></td> <td>0.00</td> <td></td> <td>0.05</td> <td></td> <td></td>			0.00		0.05		
Lane Group Flow (vph) 678 88 459 419 192 1558 Turn Type Prot Perm NA Perm pm+pt NA Protected Phases 3 6 5 2 Detector Phase 3 3 6 5 2 Switch Phase 3 3 6 6 5 2 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 16.0 16.0 16.0 16.0 16.0 13.0 16.0 Total Split (s) 61.0 61.0 60.0 60.0 34.0 94.0 Total Split (%) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <t< td=""><td></td><td>0.92</td><td>0.92</td><td>0.95</td><td>0.95</td><td>0.90</td><td>0.90</td></t<>		0.92	0.92	0.95	0.95	0.90	0.90
Turn Type					_	_	
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Minimum Minimum Minimum Split (s) Minimum Split (s) Minimum Minimu							
Permitted Phases 3	31		Perm		Perm		
Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 16.0 16.0 16.0 16.0 16.0 13.0 16.0 Total Split (s) 61.0 61.0 60.0 60.0 34.0 94.0 Total Split (%) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Recall Mode None None C-Min C-Min None C-Min Act Effet Green (s) 68.8 68.8 57.4 57.4 78.2 78.2 Actuated g/C Ratio 0.44 0.44 0.37 0.37 0.50 0.50 v/c Ratio 0.86 0.12 0.24 0.49 0.39 0.61 Control Delay 51.9 14.6 31.0 10.9 23.5 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach LOS D C C C Approach LOS D C C C C Queue Length 95th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 Eneroid Delay 150 150 350		3		6			2
Switch Phase Minimum Initial (s) 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0					6		
Minimum Initial (s) 5.0 6.0 4.0	Detector Phase	3	3	6	6	5	2
Minimum Split (s) 16.0 16.0 16.0 16.0 13.0 16.0 Total Split (s) 61.0 61.0 60.0 60.0 34.0 94.0 Total Split (%) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0	Switch Phase						
Minimum Split (s) 16.0 16.0 16.0 16.0 13.0 16.0 Total Split (s) 61.0 61.0 60.0 60.0 34.0 94.0 Total Split (%) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0	Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Total Split (s) 61.0 61.0 60.0 60.0 34.0 94.0 Total Split (%) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) -2.0		16.0	16.0	16.0	16.0	13.0	16.0
Total Split (%) 39.4% 39.4% 38.7% 38.7% 21.9% 60.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0<		61.0	61.0	60.0	60.0	34.0	94.0
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.0							
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effet Green (s) Actuated g/C Ratio Control Delay Delay Delay Dolay Dol							
Lost Time Adjust (s) -2.0 -2.0							
Total Lost Time (s) 4.0 4.2 78.	` '						
Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode None None C-Min C-Min None C-Min Act Effct Green (s) 68.8 68.8 57.4 57.4 78.2 78.2 Actuated g/C Ratio 0.44 0.44 0.37 0.37 0.50 0.50 v/c Ratio 0.86 0.12 0.24 0.49 0.39 0.61 Control Delay 51.9 14.6 31.0 10.9 23.5 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105	• • • •						
Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None None C-Min C-Min None C-Min Act Effct Green (s) 68.8 68.8 57.4 57.4 78.2 78.2 Actuated g/C Ratio 0.44 0.44 0.37 0.37 0.50 0.50 v/c Ratio 0.86 0.12 0.24 0.49 0.39 0.61 Control Delay 51.9 14.6 31.0 10.9 23.5 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) 579		٦.0	4.0				4.0
Recall Mode None None C-Min C-Min None C-Min Act Effct Green (s) 68.8 68.8 57.4 57.4 78.2 78.2 Actuated g/C Ratio 0.44 0.44 0.37 0.37 0.50 0.50 v/c Ratio 0.86 0.12 0.24 0.49 0.39 0.61 Control Delay 51.9 14.6 31.0 10.9 23.5 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) 579 1041 867 Turn Bay Length (ft)							
Act Effct Green (s) 68.8 68.8 57.4 57.4 78.2 78.2 Actuated g/C Ratio 0.44 0.44 0.37 0.37 0.50 0.50 v/c Ratio 0.86 0.12 0.24 0.49 0.39 0.61 Control Delay 51.9 14.6 31.0 10.9 23.5 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350		Mono	Mono				C Min
Actuated g/C Ratio 0.44 0.44 0.37 0.37 0.50 0.50 0.61 0.86 0.12 0.24 0.49 0.39 0.61							
V/c Ratio 0.86 0.12 0.24 0.49 0.39 0.61 Control Delay 51.9 14.6 31.0 10.9 23.5 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350							
Control Delay 51.9 14.6 31.0 10.9 23.5 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350	o o						
Queue Delay 0.0							
Total Delay 51.9 14.6 31.0 10.9 23.5 28.4 LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350	3						
LOS D B C B C C Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350							
Approach Delay 47.6 21.4 27.9 Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350							
Approach LOS D C C Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350			В		В	С	
Queue Length 50th (ft) 620 26 137 161 105 398 Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350							
Queue Length 95th (ft) #909 65 171 229 146 420 Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350							
Internal Link Dist (ft) 579 1041 867 Turn Bay Length (ft) 200 150 350	Queue Length 50th (ft)	620	26		161	105	398
Turn Bay Length (ft) 200 150 350	Queue Length 95th (ft)	#909	65	171	229	146	420
	Internal Link Dist (ft)	579		1041			867
	Turn Bay Length (ft)		200		150	350	
Dase Capacity (vpii) 700 720 1077 000 074 2702	Base Capacity (vph)	785	726	1899	853	574	2952
	Starvation Cap Reductn	0	0	0	0	0	0

Build (2020) Conditions Timing Plan: PM Peak Hour

1: US 1 & Centreport Parkway

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Spillback Cap Reductn	0	0	0	0	0	45
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.86	0.12	0.24	0.49	0.33	0.54

Intersection Summary

Area Type: Other

Cycle Length: 155 Actuated Cycle Length: 155

Offset: 80 (52%), Referenced to phase 2:SBTL and 6:NBT, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 30.7 Intersection Capacity Utilization 68.3%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: US 1 & Centreport Parkway

	۶	→	•	•	+	•	•	†	/	/		- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	f)			44		¥	ተተኈ		, J	^	7
Traffic Volume (vph)	251	8	208	9	2	5	238	578	12	10	1628	388
Future Volume (vph)	251	8	208	9	2	5	238	578	12	10	1628	388
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	350		250	0		0	450		0	200		0
Storage Lanes	2		0	0		0	1		0	1		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	3433	1595	0	0	1738	0	1770	5070	0	1770	3539	1583
Flt Permitted	0.950				0.973		0.950			0.950		
Satd. Flow (perm)	3433	1595	0	0	1738	0	1770	5070	0	1770	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		191			11			4				381
Link Speed (mph)		40			30			45			45	
Link Distance (ft)		689			688			479			1121	
Travel Time (s)		11.7			15.6			7.3			17.0	
Peak Hour Factor	0.92	0.92	0.92	0.35	0.35	0.35	0.88	0.88	0.88	0.92	0.92	0.92
Shared Lane Traffic (%)												
Lane Group Flow (vph)	273	235	0	0	46	0	270	671	0	11	1770	422
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	4	4		3	3		1	6		5	2	4
Permitted Phases												2
Detector Phase	4	4		3	3		1	6		5	2	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	16.0	16.0		13.0	13.0		13.0	16.0		13.0	16.0	16.0
Total Split (s)	21.0	21.0		14.0	14.0		25.0	106.0		14.0	95.0	21.0
Total Split (%)	13.5%	13.5%		9.0%	9.0%		16.1%	68.4%		9.0%	61.3%	13.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0			-2.0		-2.0	-2.0		-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0			4.0		4.0	4.0		4.0	4.0	4.0
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None		None	None		None	C-Min		None	C-Min	None
Act Effct Green (s)	16.8	16.8			9.3		25.1	113.8		8.5	90.1	107.7
Actuated g/C Ratio	0.11	0.11			0.06		0.16	0.73		0.05	0.58	0.69
v/c Ratio	0.73	0.69			0.40		0.94	0.18		0.11	0.86	0.35
Control Delay	79.4	26.0			65.8		104.0	7.4		81.5	28.7	0.7
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.5	0.0
Total Delay	79.4	26.0			65.8		104.0	7.4		81.5	29.1	0.7
LOS	Е	С			Ε		F	Α		F	С	Α
Approach Delay		54.7			65.8			35.1			24.0	
Approach LOS		D			Ε			D			С	
Queue Length 50th (ft)	140	42			34		~315	64		11	888	0
Queue Length 95th (ft)	192	139			24		#487	108		m19	964	m0
Internal Link Dist (ft)		609			608			399			1041	
Turn Bay Length (ft)	350						450			200		
Base Capacity (vph)	380	346			122		286	3722		114	2077	1219
Starvation Cap Reductn	0	0			0		0	0		0	72	0

	۶	→	\rightarrow	•	←	•	•	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0			0		0	0		0	0	0
Storage Cap Reductn	0	0			0		0	0		0	0	0
Reduced v/c Ratio	0.72	0.68			0.38		0.94	0.18		0.10	0.88	0.35

Area Type: Other

Cycle Length: 155 Actuated Cycle Length: 155

Offset: 53 (34%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94 Intersection Signal Delay: 31.5 Intersection Capacity Utilization 81.5%

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: US 1 & Enon Road /Cranes Corner Road

•						
Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations				^	^	7
Traffic Vol, veh/h	0	103	0	828	1746	99
Future Vol, veh/h	0	103	0	828	1746	99
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	200
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	112	0	900	1898	108
Major/Minor M	linor2	N	Major1	N	Major2	
Conflicting Flow All	-	949	viajoi i	0	viajoiz	0
Stage 1	-	747	-	Ū	-	Ū
Stage 2	_	-	_	-	-	_
Critical Hdwy	_	6.94	_	-	-	_
Critical Hdwy Stg 1	_	0.74	_	-	-	_
Critical Hdwy Stg 2						
Follow-up Hdwy	-	3.32	_	-	-	_
Pot Cap-1 Maneuver	0	261	0			
Stage 1	0	201	0	_		
Stage 2	0	-	0	-		_
Platoon blocked, %	U	-	U	-	-	_
Mov Cap-1 Maneuver	_	261	_	-	-	-
Mov Cap-1 Maneuver	-	201	-	-	-	-
Stage 1	-	-	-	-	-	_
Stage 2	-	-	-	-	-	_
Jiay c Z	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	28.8		0		0	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT I	EBLn1	SBT	SBR	
Capacity (veh/h)		-	261	-	-	
HCM Lane V/C Ratio		-	0.429	-	_	
HCM Control Delay (s)		-	28.8	-	-	
HCM Lane LOS		-	D	-	-	
HCM 95th %tile Q(veh)		-	2	-	-	
. ,						

•							
Intersection							
Int Delay, s/veh	2.1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	₽		ሻ	↑	ሻ	7	
Traffic Vol, veh/h	391	28	80	548	28	76	
Future Vol, veh/h	391	28	80	548	28	76	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	100	-	0	0	
Veh in Median Storage		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	82	82	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	425	30	98	668	30	83	
Major/Minor N	Major1		Major2		Vinor1		
Conflicting Flow All	0	0	455	0	1303	440	
Stage 1	-	-	-	-	440	-	
Stage 2	-	-	-	-	863	-	
Critical Hdwy	-	-	4.12	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	-	-	2.218	-	3.518	3.318	
Pot Cap-1 Maneuver	-	-	1106	-	177	617	
Stage 1	-	-	-	-	649	-	
Stage 2	-	-	-	-	413	-	
Platoon blocked, %	-	-	110/	-	1/1	/17	
Mov Cap-1 Maneuver	-	-	1106	-	161	617	
Mov Cap-2 Maneuver	-	-	-	-	161	-	
Stage 1	-	-	-	-	649 276	-	
Stage 2	-	-	-	-	376	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		1.1		17.3		
HCM LOS					С		
Minor Lane/Major Mvm	nt ľ	NBLn1 i	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)		161	617	-	-	1106	-
HCM Lane V/C Ratio		0.189		_		0.088	_
HCM Control Delay (s)		32.5	11.7	-	_	8.6	-
HCM Lane LOS		D	В	-	-	Α	-
HCM 95th %tile Q(veh))	0.7	0.5	-	-	0.3	-
` '							

Intersection: 1: US 1	& Centreport Parkway
-----------------------	----------------------

Movement	WB	WB	NB	NB	NB	NB	SB	SB	SB	SB	
Directions Served	L	R	T	T	Т	R	L	T	T	T	
Maximum Queue (ft)	614	300	174	178	160	183	294	413	378	310	
Average Queue (ft)	433	98	91	87	55	79	85	246	215	151	
95th Queue (ft)	668	306	162	160	136	154	203	405	367	287	
Link Distance (ft)	588		1049	1049	1049			686	686	686	
Upstream Blk Time (%)	7										
Queuing Penalty (veh)	0										
Storage Bay Dist (ft)		200				150	350				
Storage Blk Time (%)	37				0	1		2			
Queuing Penalty (veh)	28				0	2		3			

Movement	EB	EB	WB	NB	NB	NB	NB	SB	SB	SB	SB	
Directions Served	LT	R	LTR	L	Ţ	T	TR	L	T	Т	R	
Maximum Queue (ft)	291	201	47	252	90	57	142	19	441	447	127	
Average Queue (ft)	168	98	10	155	30	14	48	2	215	225	49	
95th Queue (ft)	288	183	37	241	75	46	124	14	390	400	109	
Link Distance (ft)	490		621		960	960	960		1049	1049	1049	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)		250		450				200				
Storage Blk Time (%)	3	0							8			
Queuing Penalty (veh)	6	0							0			

Network Summary

Intersection: 1: US 1	& Centreport Parkway
-----------------------	----------------------

Movement	WB	WB	NB	NB	NB	NB	SB	SB	SB	SB	
Directions Served	L	R	T	T	T	R	L	T	T	Т	
Maximum Queue (ft)	273	144	192	184	270	240	82	105	57	65	
Average Queue (ft)	157	60	96	95	87	117	42	43	14	22	
95th Queue (ft)	258	118	174	171	219	225	85	94	44	60	
Link Distance (ft)	576		1060	1060	1060			782	782	782	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)		200				150	350				
Storage Blk Time (%)	5	0			0	5					
Queuing Penalty (veh)	14	0			2	17					

Movement	EB	EB	В8	WB	NB	NB	NB	NB	В9	SB	SB	SB
Directions Served	LT	R	Т	LTR	L	T	T	TR	T	L	Т	T
Maximum Queue (ft)	479	324	81	117	538	729	628	351	85	22	232	231
Average Queue (ft)	297	132	27	48	394	272	197	184	13	3	143	136
95th Queue (ft)	532	349	188	108	611	744	558	332	78	15	225	220
Link Distance (ft)	481		449	621		741	741	741	139		1060	1060
Upstream Blk Time (%)	7		1			3	0		1			
Queuing Penalty (veh)	0		0			0	0		0			
Storage Bay Dist (ft)		250			450					200		
Storage Blk Time (%)	23				15	0					3	
Queuing Penalty (veh)	63				66	0					0	

Intersection: 2: US 1 & Enon Road /Cranes Corner Road

Movement	SB	
Directions Served	R	
Maximum Queue (ft)	264	
Average Queue (ft)	137	
95th Queue (ft)	261	
Link Distance (ft)	1060	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

	Intersection: 1: US 1	& Centreport Parkway
--	-----------------------	----------------------

Movement	WB	WB	NB	NB	NB	NB	SB	SB	SB	SB	
Directions Served	L	R	T	T	Т	R	L	T	T	T	
Maximum Queue (ft)	617	299	172	174	157	183	277	435	398	309	
Average Queue (ft)	462	97	100	93	65	82	108	270	236	175	
95th Queue (ft)	668	303	162	156	137	162	226	419	376	297	
Link Distance (ft)	588		1049	1049	1049			686	686	686	
Upstream Blk Time (%)	8										
Queuing Penalty (veh)	0										
Storage Bay Dist (ft)		200				150	350				
Storage Blk Time (%)	39				0	1	0	3			
Queuing Penalty (veh)	32				1	2	0	5			

Movement	EB	EB	В8	WB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LT	R	T	LTR	L	T	T	TR	L	T	T	R
Maximum Queue (ft)	331	153	24	61	297	110	84	157	87	467	443	123
Average Queue (ft)	197	60	7	21	169	41	19	57	15	253	268	49
95th Queue (ft)	356	169	65	57	299	96	63	132	75	448	439	111
Link Distance (ft)	483		449	621		766	766	766		1049	1049	1049
Upstream Blk Time (%)	2											
Queuing Penalty (veh)	0											
Storage Bay Dist (ft)		250			450				200			
Storage Blk Time (%)	7									12		
Queuing Penalty (veh)	14									1		

Intersection: 9: Bend

Movement	SB	SB
Directions Served	T	T
Maximum Queue (ft)	155	154
Average Queue (ft)	10	14
95th Queue (ft)	157	182
Link Distance (ft)	766	766
Upstream Blk Time (%)	0	0
Queuing Penalty (veh)	0	0
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Intersection: 1: US 1	& Centreport Parkway
-----------------------	----------------------

Movement	WB	WB	NB	NB	NB	NB	SB	SB	SB	SB	
Directions Served	L	R	T	T	Т	R	L	T	T	T	
Maximum Queue (ft)	442	282	229	267	282	211	80	107	70	74	
Average Queue (ft)	191	94	111	121	113	111	42	47	22	25	
95th Queue (ft)	374	226	206	225	246	208	80	99	58	67	
Link Distance (ft)	562		1050	1050	1050			850	850	850	
Upstream Blk Time (%)	1										
Queuing Penalty (veh)	0										
Storage Bay Dist (ft)		200				150	350				
Storage Blk Time (%)	11	0			2	3					
Queuing Penalty (veh)	33	1			17	12					

Movement	EB	EB	EB	WB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	L	L	TR	LTR	L	T	T	TR	L	T	T	R
Maximum Queue (ft)	332	364	296	98	403	454	393	197	22	314	317	217
Average Queue (ft)	215	247	91	40	348	287	166	97	3	192	192	95
95th Queue (ft)	349	384	266	93	461	565	365	190	17	313	320	202
Link Distance (ft)			592	619		404	404	404		1050	1050	1050
Upstream Blk Time (%)			0		13	17	0					
Queuing Penalty (veh)			1		0	113	1					
Storage Bay Dist (ft)	350	350			450				200			
Storage Blk Time (%)	1	5			13	17				14		
Queuing Penalty (veh)	2	12			52	127				1		

Intersection: 3: US 1 & RIRO

Movement	EB	NB	NB	NB	B12	B12	SB
Directions Served	R	T	Ţ	T	T	T	R
Maximum Queue (ft)	52	439	358	2	211	174	4
Average Queue (ft)	22	175	119	0	59	38	0
95th Queue (ft)	45	508	396	3	271	206	6
Link Distance (ft)	114	399	399	399	389	389	
Upstream Blk Time (%)		9	0		4	0	
Queuing Penalty (veh)		0	0		0	0	
Storage Bay Dist (ft)							200
Storage Blk Time (%)							
Queuing Penalty (veh)							

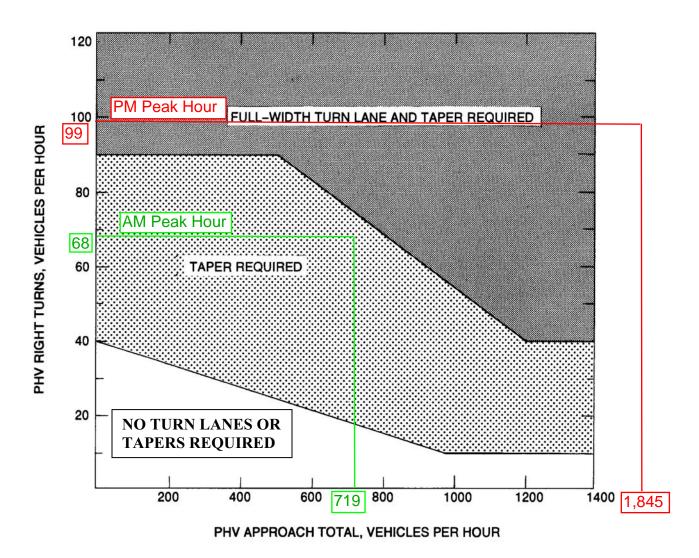
Intersection: 4: Full Movement Drive & Enon Road

Movement	EB	WB	WB	NB	NB
Directions Served	TR	L	T	L	R
Maximum Queue (ft)	34	119	50	89	119
Average Queue (ft)	4	54	3	34	63
95th Queue (ft)	26	102	37	81	108
Link Distance (ft)	444		592	129	129
Upstream Blk Time (%)				0	1
Queuing Penalty (veh)				0	0
Storage Bay Dist (ft)		100			
Storage Blk Time (%)		1	0		
Queuing Penalty (veh)		12	0		
Notwork Curement					
Network Summary					

Intersection: 1: US 1	& Centreport Parkway
-----------------------	----------------------

Movement	WB	WB	NB	NB	NB	NB	SB	SB	SB	SB	
Directions Served	L	R	T	T	Т	R	L	T	T	T	
Maximum Queue (ft)	614	300	168	180	201	214	337	452	417	368	
Average Queue (ft)	460	94	84	94	84	98	116	259	240	180	
95th Queue (ft)	705	300	163	169	179	197	262	410	388	327	
Link Distance (ft)	589		1040	1040	1040			911	911	911	
Upstream Blk Time (%)	15										
Queuing Penalty (veh)	0										
Storage Bay Dist (ft)		200				150	350				
Storage Blk Time (%)	41				0	2	0	3			
Queuing Penalty (veh)	34				2	4	0	5			

Movement	EB	EB	EB	WB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	L	L	TR	LTR	L	T	T	TR	L	T	T	R
Maximum Queue (ft)	209	245	229	71	378	393	342	170	69	528	560	168
Average Queue (ft)	112	166	138	19	283	205	115	63	13	264	285	58
95th Queue (ft)	208	241	221	62	434	477	342	143	59	470	487	149
Link Distance (ft)			594	616		403	403	403		1040	1040	1040
Upstream Blk Time (%)					12	15	0					
Queuing Penalty (veh)					0	42	0					
Storage Bay Dist (ft)	350	350			450				200			
Storage Blk Time (%)					12	15				14		
Queuing Penalty (veh)					23	37				1		


Intersection: 3: US 1 & RIRO

Movement	EB	NB	NB	B12	B12	SB
Directions Served	R	Ţ	T	T	Ţ	Ţ
Maximum Queue (ft)	121	215	161	14	13	9
Average Queue (ft)	57	70	42	4	1	1
95th Queue (ft)	112	296	213	41	18	12
Link Distance (ft)	116	409	409	130	130	403
Upstream Blk Time (%)	2	3	0	1	0	
Queuing Penalty (veh)	0	0	0	0	0	
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 4: Full Movement Drive & Enon Road

EB	WB	NB	NB
TR	L	L	R
2	51	41	58
0	22	17	33
3	50	44	54
444		129	129
	100		
	TR 2 0 3	TR L 2 51 0 22 3 50 444	TR L L 2 51 41 0 22 17 3 50 44 444 129

Network Summary

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV- - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

If PHV is not known use formula: PHV = ADT x K x D

K = the percent of AADT occurring in the peak hour

D = the percent of traffic in the peak direction of flow

Note: An average of 11% for K x D will suffice.

When right turn facilities are warranted, see Figure 3-1 for design criteria.*

FIGURE 3-27 WARRANTS FOR RIGHT TURN TREATMENT (4-LANE HIGHWAY)

^{*} Rev. 1/15

WARRANT FOR LEFT-TURN STORAGE LANES ON TWO-LANE HIGHWAY

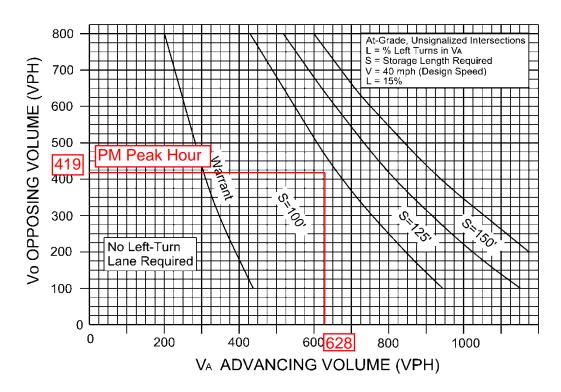


FIGURE 3-7

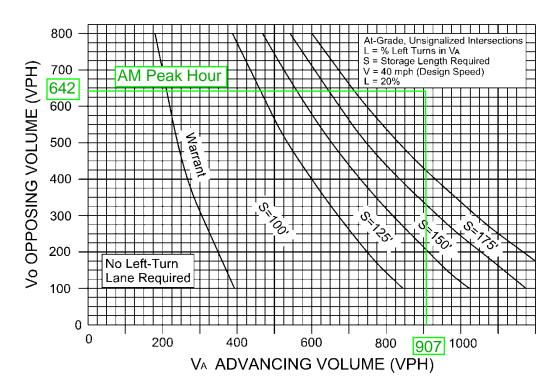
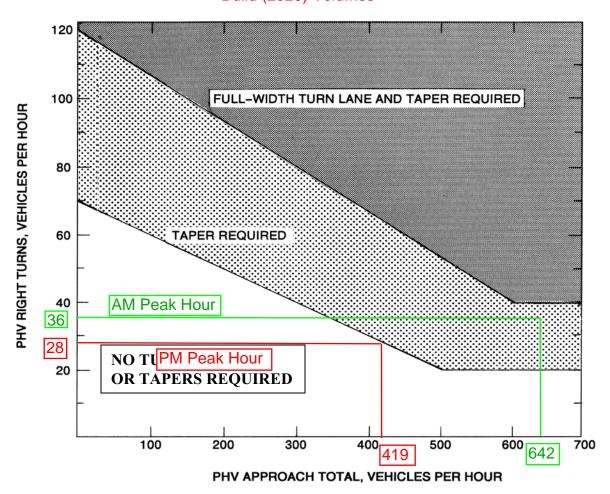



FIGURE 3-8

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under 45 mph, PHV right turns > 40, and PHV total < 300.

Adjusted right turns = PHV Right Turns - 20

If PHV is not known use formula: PHV = ADT x K x D

K = the percent of AADT occurring in the peak hour

D = the percent of traffic in the peak direction of flow

Note: An average of 11% for K x D will suffice.

When right turn facilities are warranted, see Figure 3-1 for design criteria.

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

^{*} Rev. 1/15

PRE-SCOPE OF WORK MEETING FORM

Information on the Project Traffic Impact Analysis Base Assumptions

The applicant is responsible for entering the relevant information and submitting the form to VDOT and the locality no less than three (3) business days prior to the meeting. If a form is not received by this deadline, the scope of work meeting may be postponed.

Contact Information	1								
Consultant Name:		Ramey Kemp & Associates, Inc. / Michael Bailey, P.E., PTOE							
Tele:		(804) 217-8560							
E-mail:	mbailey@rameykem								
Developer/Owner Name:		actor / Thomas Wack							
Tele:	(540) 372-4565								
E-mail:	twack@wackgc.com								
Project Information	1								
Project Name:	Enon Road Convenie	nce Store	Locality/County:	Stafford County					
Project Location: (Attach regional and site specific location map)	Refer to Figure 1								
Submission Type	Comp Plan	Rezoning 🖂	Site Plan	Subd Plat					
Project Description: (Including details on the land use, acreage, phasing, access location, etc. Attach additional sheet if necessary)	Cranes Corner Road in market with 12 fueling	ed in the southwest quaintersection. The conc ag positions. The proponent Enon Road, and one	eptual plan includes a osed access plan inclu	a convenience udes one full					
Proposed Use(s): (Check all that apply; attach additional pages as necessary)	Residential	Commercial 🖂	Mixed Use	Other					
	Residential Uses(s)								
	Number of Units:								
	ITE LU Code(s):								
			Other Use(s)						
			ITE LU Code(s):						
	Commercial Use(s)								
	ITE LU Code(s):	960 - 12 f.p.							
			Independent Variable	(s):					
	Square Ft or Other Va	ariable:							
Total Peak Hour Trip Projection:	Less than 100	100 – 499	500 – 999 🔀	1,000 or more					

Traffic Impact Analys	fic Impact Analysis Assumptions								
Study Period	Existing Year: 2018	Build-c	ut Ye	ar: 2020		Design Year	: 2020		
Study Area Boundaries	North: See Figure 1		So	South:					
(Attach map)	East:		We	est:					
External Factors That Could Affect Project (Planned road improvements, other nearby developments)			-	ment (See Trip Generation and Figure 2) opment (See Trip Generation and Figure 3)					
Consistency With Comprehensive Plan (Land use, transportation plan)	Suburban land use. this land use district lanes. Pavement is	The site is designated on the Future Land Use map as Commerical Corridor / Suburban land use. This use is generally consistent with the recommendations this land use district. The Transportation Plan recommends widening of US 1 lanes. Pavement is in place, but additional right-of-way may need to be dedica across a portion of the US 1 frontage to be consistent with this recommendation							
Available Traffic Data (Historical, forecasts)	US 1 (Jefferson Davis Highway) - 2 Enon Road - 4,800 vpd in 2010 / 5,9			20,000 vpd in 2010 / 22,000 vpd in 2015 900 vpd in 2015					
Trip Distribution	Road Name: See Figure 4			oad Name:					
(Attach sketch)	Road Name:			oad Name:					
Annual Vehicle Trip	2.0%	Peak Period (check all that a							
Growth Rate:			the	he Generator					
	1.US 1 at Enon Roa Corner Road	d / Cranes	6	6.					
Study Intersections	2.US 1 at Centrepor	t Parkway	7	7.					
and/or Road Segments (Attach additional sheets as	3.Enon Road at Pro movement driveway		8	8.					
necessary)	4.US 1 at Proposed right-out driveway		9	9.					
	5.		1	0.					
Trip Adjustment Factors	Internal allowance: Yes No Reduction:% trips			o Pass-by allowance: Yes No Reduction: ITE% trips					
Software Methodology	Synchro HCS (v.2000/+) aaSIDRA CORSIM Other SimTraff						r SimTraffic		
Traffic Signal Proposed or Affected (Analysis software to be used, progression speed, cycle length)	Synchro / SimTraff study intersections.	c 9 will be us	ed to	analyze LO	S, delay	, and queueir	ng at the		

It is important for the applicant to provide sufficient information to county and VDOT staff so that questions regarding geographic scope, alternate methodology, or other issues can be answered at the scoping meeting.

Improvement(s) Assumed or to be Considered	The need for turn lanes and other off-site improvements will be determined based on the results of the TIA.
Background Traffic Studies Considered	None
Plan Submission	☐ Master Development Plan (MDP) ☐ Generalized Development Plan (GDP) ☐ Other Plan type (Final Site, Subd. Plan)
Additional Issues to be Addressed	✓ Queuing analysis ☐ Actuation/Coordination ☐ Weaving analysis ☐ Merge analysis ☐ Bike/Ped Accommodations ☐ Intersection(s) ☐ TDM Measures ☐ Other AME Request

NOTES on ASSUMPTIONS:

The traffic counts performed by RKA in January 2017 will be grown by 2.0% for one year to estimate the current 2018 traffic conditions.

The TIA will include three analysis scenarios:

- Existing (2018) Traffic Conditions
- No-Build (2020) Traffic Conditions

- Build (2020) Traffic Conditions

PRINT NAME: Michael Ba Applicant or Consultant

It is important for the applicant to provide sufficient information to county and VDOT staff so that questions regarding geographic scope, alternate methodology, or other issues can be answered at the scoping meeting.

PRE-SCOPE OF WORK MEETING FORM

Information on the Project Traffic Impact Analysis Base Assumptions

The applicant is responsible for entering the relevant information and submitting the form to VDOT and the locality no less than three (3) business days prior to the meeting. If a form is not received by this deadline, the scope of work meeting may be postponed.

Contact Information										
Consultant Name:		ociates, Inc. / Michael	Bailey, P.E., PTOE							
Tele:	(804) 217-8560									
E-mail:		mbailey@rameykemp.com								
Developer/Owner Name:		actor / Thomas Wack								
Tele:	(540) 372-4565									
E-mail:	twack@wackgc.com		·-							
Project Information										
Project Name:	Enon Road Convenie	nce Store	Locality/County:	Stafford County						
Project Location: (Attach regional and site specific location map)	Refer to Figure 1									
Submission Type	Comp Plan	Rezoning 🔀	Site Plan	Subd Plat						
Project Description: (Including details on the land use, acreage, phasing, access location, etc. Attach additional sheet if necessary)	Cranes Corner Road i market with 12 fuelin	ed in the southwest quantersection. The conc g positions. The proposition Enon Road, and one	eptual plan includes a osed access plan inclu	a convenience udes one full						
Proposed Use(s): (Check all that apply; attach additional pages as necessary)	Residential	Commercial 🔀	Mixed Use	Other						
	Residential Uses(s)									
	Number of Units:									
	ITE LU Code(s):									
			Other Use(s)							
			ITE LU Code(s):							
	Commercial Use(s)	0.00 10.0								
	ITE LU Code(s):	960 - 12 f.p.								
			Independent Variable	(s):						
	Square Ft or Other Variable:									
Total Peak Hour Trip Projection:	Less than 100	100 – 499	500 – 999 🔀	1,000 or more						

Traffic Impact Analy	sis Assumption	5								
Study Period	Existing Year: 201	8 Build-o	out Y	ear:	: 2020		Desi	gn Yea	r: 20	20
Study Area Boundaries	North: See Figure 1		So	South:						
(Attach map)	East:		W	West:						
External Factors That Could Affect Project (Planned road improvements, other nearby developments)	Cranes Corner Resi Potomac Creek Cor									
Consistency With Comprehensive Plan (Land use, transportation plan)	The site is designat Suburban land use. this land use distric lanes. Pavement is across a portion of	This use is get. The Transpin place, but a	nera ortat iddit	lly c tion	consistent Plan reco al right-of	with the mmend way m	ne reco ls wid nay ne	ommen lening o ed to b	dation of US e ded	ns for 1 to 6 icated
Available Traffic Data (Historical, forecasts)	US 1 (Jefferson Da Enon Road - 4,800					2,000	vpd in	2015		
Trip Distribution	Road Name: See Figure 4			Roa	d Name:					
(Attach sketch)	Road Name:			Road Name:						
Annual Vehicle Trip Growth Rate:	2.0%	Peak Period (check all that a	pply)					SAT		
Glowur Rate.	4.10.1		f the	he Generator						
	1.US 1 at Enon Ros Corner Road	ad / Cranes		6.						
Study Intersections	2.US 1 at Centrepo	rt Parkway		7.						
and/or Road Segments (Attach additional sheets as	3.Enon Road at Promovement drivewa	-		8.						
necessary)	4.US 1 at Proposed right-out driveway	Right-in /		9.						
	5.			10.						
Trip Adjustment Factors	Internal allowance: Reduction:9	No	o Pass-by allowance: X Yes No Reduction: ITE% trips							
Software Methodology	Synchro HCS (v.2000/+) aaSIDRA CORSIM Other SimTra						nTraffic			
Traffic Signal Proposed or Affected (Analysis software to be used, progression speed, cycle length)	_ *	Synchro / SimTraffic 9 will be used to analyze LOS, delay, and queueing at the study intersections.						the		

It is important for the applicant to provide sufficient information to county and VDOT staff so that questions regarding geographic scope, alternate methodology, or other issues can be answered at the scoping meeting.

Improvement(s) Assumed or to be Considered	The need for turn lanes and other off-site improvements will be determined based on the results of the TIA.
Background Traffic Studies Considered	None
Plan Submission	☐ Master Development Plan (MDP) ☐ Generalized Development Plan (GDP) ☐ Preliminary/Sketch Plan ☐ Other Plan type (Final Site, Subd. Plan)
Additional Issues to be Addressed	☑ Queuing analysis ☐ Actuation/Coordination ☐ Weaving analysis ☐ Merge analysis ☒ Bike/Ped Accommodations ☒ Intersection(s) ☐ TDM Measures ☒ Other AME Request

NOTES on ASSUMPTIONS:

The traffic counts performed by RKA in January 2017 will be grown by 2.0% for one year to estimate the current 2018 traffic conditions.

The TIA will include three analysis scenarios:

- Existing (2018) Traffic Conditions
- No-Build (2020) Traffic Conditions

- Build (2020) Traffic Conditions

SIGNED:

PRINT NAME:

Applicant or Consultant

Applicant or Consultant

It is important for the applicant to provide sufficient information to county and VDOT staff so that questions regarding geographic scope, alternate methodology, or other issues can be answered at the scoping meeting.

SCOPE OF WORK MEETING CONCLUSIONS

ADDITIONS TO THE VDOT REQUIRED ELEMENTS, CHANGES TO THE METHODOLOGY OR STANDARD ASSUMPTIONS, AND SIGNATURE PAGE

NA	
- 7	
he applicant wi	ill contact VDOT and the locality prior to the preparation of the traffic impac
nalysis study in ffect the scope (the event there are any substantial changes in the existing conditions that will
ffect the scope	the event there are any substantial changes in the existing conditions that will
AGREED:	the event there are any substantial changes in the existing conditions that will of the study.
AGREED: AGREED: PRINT NAME:	the event there are any substantial changes in the existing conditions that will of the study. DATE: 3/27/2018 Applicant or Consultant Michael Bailey P.E. PTDE
AGREED: AGREED	the event there are any substantial changes in the existing conditions that will of the study. DATE: 3/27/2018 Applicant or Consultant DATE: 3/27/18 VDOT Representative
ffect the scope of AGREED:	the event there are any substantial changes in the existing conditions that will of the study. DATE: 3/27/2018 Applicant or Consultant Michael Bailey P.E. PTOE Applicant or Consultant DATE: 3/27/18 VDOT Representative DAUG L. BEALE VDOT Representative

TIA Scoping Meeting Sign-In Sheet

Project:

Enon Road Convenients Meeting Date: 3-12-18 Stafford Place/Room: VDOTO County:

Name (check if present)	Company	Phone	E-Mail
David Beale	VDOT – TLU	540654-1973	david.beale@vdot.virginia.gov
Stephen Haynes	VDOT Planning	540-899-4709	stephen.haynes@vdot.virginia.gov
Bill Arel	VDOT- L& D	540-8994494	william.arel@vdot.virginia.gov
Peter Hedrich	VDOT – Traffic Eng.	540-899-4540	peter.hedrich@vdot.virginia.gov
Margaret Niemann	VDOT – TLU	540-899-4106	margaret.niemann@vdot.virginia.gov
Jacob Herrman	VDOT – Planning	540-899-4490	jacob.herman@vdot.virginia.gov
Ali Farhangi	VDOT- Traffic Eng	540-899-4544	Ali.Farhangi@vdot.virginia.gov
Mike Zuraf	Stafford County	540-658-8668	MZuraf@staffordcountyva.gov
Joey Hess	Stafford County	540-658-4611	JHess@staffordcountyva.gov
Brian Geouge	Stafford County	540-658-8668	BGeouge@staffordcountyva.gov
Carl Hultgren	Ramay Kemp	804-217-8560	chultgren Bramay Kemp, com
Delraca tama	Sheety/L+H	540-65	7-5155 Lemingard Neck /6
JUSTIN FRANKLIN	FAIRBANKS & FI	MAKLIN 50	10 899-3700 frankling ff-pc.com
ARTURO Ruiz	VDOT-LDP	ALONGO ALONGO L'ÉNORO A	ARTURO RUIZ & VOOT VINGLINIA 600
DILSHAD SHAMS	UDOT-COP	Palawathatir as b	DILSHAD-SHAMS @ " "
		The same of the sa	
		H THE GENERAL PROPERTY OF THE PARTY OF THE P	
	Principle of the Princi	Library Christian Control of Cont	
		And the constitution of th	
	And the second s		